Robustness in Geometric Computations

Geometric computation software tends to be fragile and fails occasionally. This robustness problem is rooted in the difficulty of making unambiguous decisions about incidence and nonincidence, fundamentally impairing layering the geometry software reliably. Additionally, geometric operations tend to have a large number of special and singular cases, further adding to the difficulty of creating dependable geometric software. We review the problem origins and ways to address it.

[1]  Rida T. Farouki,et al.  Approximation by Interval , 1992 .

[2]  Christoph M. Hoffmann,et al.  Geometric and Solid Modeling , 1989 .

[3]  Rida T. Farouki,et al.  On the numerical condition of polynomials in Bernstein form , 1987, Comput. Aided Geom. Des..

[4]  A. Neumaier Interval methods for systems of equations , 1990 .

[5]  Dinesh Manocha,et al.  Efficient and exact manipulation of algebraic points and curves , 2000, Comput. Aided Des..

[6]  John E. Hopcroft,et al.  Towards implementing robust geometric computations , 1988, SCG '88.

[7]  Christopher J. Van Wyk,et al.  Efficient exact arithmetic for computational geometry , 1993, SCG '93.

[8]  Ulrich W. Kulisch,et al.  C++ Toolbox for Verified Scientific Computing I: Basic Numerical Problems , 1997 .

[9]  Jiaxun Yu Exact arithmetic solid modeling , 1992 .

[10]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[11]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[12]  Christoph M. Hoffmann,et al.  Geometric and Solid Modeling: An Introduction , 1989 .

[13]  Jon G. Rokne,et al.  Exact computation of the sign of a finite sum , 1999, Appl. Math. Comput..

[14]  John Stuart Lakos,et al.  Large-Scale C++ Software Design , 1996 .

[15]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[16]  Nicholas M. Patrikalakis,et al.  Robust interval solid modelling Part I: representations , 1996, Comput. Aided Des..

[17]  Fujio Yamaguchi,et al.  Curves and Surfaces in Computer Aided Geometric Design , 1988, Springer Berlin Heidelberg.

[18]  Steven Fortune,et al.  Polyhedral modelling with exact arithmetic , 1995, Symposium on Solid Modeling and Applications.

[19]  Nicholas M. Patrikalakis,et al.  Robust interval solid modelling Part II: boundary evaluation , 1996, Comput. Aided Des..

[20]  Johannes Wallner,et al.  Error propagation in geometric constructions , 2000, Comput. Aided Des..

[21]  Rida T. Farouki,et al.  Approximation by interval Bezier curves , 1992, IEEE Computer Graphics and Applications.

[22]  M. A. Jenkins,et al.  A three-stage variable-shift iteration for polynomial zeros and its relation to generalized rayleigh iteration , 1970 .

[23]  Ulrich Kortenkamp Foundations of dynamic geometry , 2000 .

[24]  David Budgen,et al.  Software design , 2020, International computer science series.

[25]  Kokichi Sugihara,et al.  A solid modelling system free from topological inconsistency , 1990 .

[26]  Marina L. Gavrilova,et al.  Reliable line segment intersection testing , 2000, Comput. Aided Des..