Sequence of pattern onset responses in the human visual areas: an fMRI constrained VEP source analysis

We measured the timing of activity in distinct functional areas of the human visual cortex after onset of a visual pattern. This is not possible with visual evoked potentials (VEPs) or magnetic fields alone, and direct combination of functional magnetic resonance imaging (fMRI) with electromagnetic data has turned out to be difficult. We tested a relatively new approach, where both position and orientation of the active cortex was given to the VEP source model. Subjects saw the same visual patterns flashed ON and OFF, both when recording VEPs and fMRI responses. We identified the positions and orientations of the activated cortex in four retinotopic areas in each individual, and the corresponding dipoles were seeded to model the individual evoked potential data. Unexplained variance, comprising signals from other areas, was inversely modeled. Despite the partially a priori fixed model and optimized signal-to-noise ratio of VEP data, full separation of retinotopic areas was only seldom possible due to crosstalk between the adjacent sources, but separation was usually possible between areas V1 and V3/V3a. Whereas the latencies generally followed the hierarchical organization of cortical areas (V1-V2-V3), with around 25 ms between the strongest responses, an early activation emerged 10-20 ms after V1, close to the temporo-occipital junction (LO/V5) and with an additional 20-ms latency in the corresponding region of the opposite hemisphere. Our approach shows that it is feasible to directly seed information from fMRI to electromagnetic source models and to identify the components and dynamics of VEPs in different retinotopic areas of a human individual.

[1]  H Spekreijse,et al.  The extrastriate generators of the EP to checkerboard onset. A source localization approach. , 1991, Electroencephalography and clinical neurophysiology.

[2]  G. R. Mangun,et al.  PII: S0042-6989(01)00046-3 , 2001 .

[3]  R. Nodar,et al.  Evoked potentials II , 2001, Clinical Neurophysiology.

[4]  H. Helmholtz Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch‐elektrischen Versuche , 1853 .

[5]  C D Tesche,et al.  Signal-space projections of MEG data characterize both distributed and well-localized neuronal sources. , 1995, Electroencephalography and clinical neurophysiology.

[6]  C. Schroeder,et al.  A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque. , 1998, Cerebral cortex.

[7]  J. Horton,et al.  The representation of the visual field in human striate cortex. A revision of the classic Holmes map. , 1991, Archives of ophthalmology.

[8]  P. Nunez,et al.  On the Relationship of Synaptic Activity to Macroscopic Measurements: Does Co-Registration of EEG with fMRI Make Sense? , 2004, Brain Topography.

[9]  S. Hillyard,et al.  Involvement of striate and extrastriate visual cortical areas in spatial attention , 1999, Nature Neuroscience.

[10]  Kathryn A. Moores,et al.  Investigating the generators of the scalp recorded visuo‐verbal P300 using cortically constrained source localization , 2003, Human brain mapping.

[11]  R. Hari The neuromagnetic method in the study of the human auditory cortex , 1990 .

[12]  S Matsuoka,et al.  IFCN guidelines for topographic and frequency analysis of EEGs and EPs. Report of an IFCN committee. International Federation of Clinical Neurophysiology. , 1994, Electroencephalography and clinical neurophysiology.

[13]  R. Hari,et al.  Stronger occipital cortical activation to lower than upper visual field stimuli Neuromagnetic recordings , 1999, Experimental Brain Research.

[14]  S. Hillyard,et al.  Cortical sources of the early components of the visual evoked potential , 2002, Human brain mapping.

[15]  E. Somersalo,et al.  Visualization of Magnetoencephalographic Data Using Minimum Current Estimates , 1999, NeuroImage.

[16]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[17]  S. Luck,et al.  Sources of attention-sensitive visual event-related potentials , 2005, Brain Topography.

[18]  O. Arthurs,et al.  How well do we understand the neural origins of the fMRI BOLD signal? , 2002, Trends in Neurosciences.

[19]  D. Jeffreys,et al.  Source locations of pattern-specific components of human visual evoked potentials. I. Component of striate cortical origin , 2004, Experimental Brain Research.

[20]  A. James The pattern-pulse multifocal visual evoked potential. , 2003, Investigative ophthalmology & visual science.

[21]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[22]  C J Aine,et al.  Temporal dynamics of visual-evoked neuromagnetic sources: effects of stimulus parameters and selective attention. , 1995, The International journal of neuroscience.

[23]  R J Ilmoniemi,et al.  Spatiotemporal activity of a cortical network for processing visual motion revealed by MEG and fMRI. , 1999, Journal of neurophysiology.

[24]  John J. Foxe,et al.  The Spatiotemporal Dynamics of Illusory Contour Processing: Combined High-Density Electrical Mapping, Source Analysis, and Functional Magnetic Resonance Imaging , 2002, The Journal of Neuroscience.

[25]  Chantal Delon-Martin,et al.  fMRI Retinotopic Mapping—Step by Step , 2002, NeuroImage.

[26]  S. Hillyard,et al.  Delayed Striate Cortical Activation during Spatial Attention , 2002, Neuron.

[27]  Chantal Delon-Martin,et al.  Timing of interactions across the visual field in the human cortex , 2004, NeuroImage.

[28]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[29]  R. Ilmoniemi,et al.  Signal-space projection method for separating MEG or EEG into components , 1997, Medical and Biological Engineering and Computing.

[30]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[31]  A K Liu,et al.  Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Karl J. Friston,et al.  Analysis of functional MRI time‐series , 1994, Human Brain Mapping.

[33]  S. Hillyard,et al.  Identification of early visual evoked potential generators by retinotopic and topographic analyses , 1994 .

[34]  R. Hari,et al.  Coinciding early activation of the human primary visual cortex and anteromedial cuneus , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[35]  G. Orban,et al.  Response latencies of visual cells in macaque areas V1, V2 and V5 , 1989, Brain Research.

[36]  Karl J. Friston,et al.  Spatial registration and normalization of images , 1995 .

[37]  A. Dale,et al.  The representation of the ipsilateral visual field in human cerebral cortex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[38]  D. Heeger,et al.  In this issue , 2002, Nature Reviews Drug Discovery.

[39]  Karl J. Friston,et al.  Cognitive Conjunction: A New Approach to Brain Activation Experiments , 1997, NeuroImage.

[40]  E. Halgren,et al.  Dynamic Statistical Parametric Mapping Combining fMRI and MEG for High-Resolution Imaging of Cortical Activity , 2000, Neuron.

[41]  Antigona Martínez,et al.  Source analysis of event-related cortical activity during visuo-spatial attention. , 2003, Cerebral cortex.

[42]  J. Bullier,et al.  Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities. , 2001, Journal of neurophysiology.

[43]  J. Nedzelski Advances in Audiology , 1985 .

[44]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[45]  A. Leventhal,et al.  Signal timing across the macaque visual system. , 1998, Journal of neurophysiology.

[46]  J. Bullier,et al.  Visual latencies in areas V1 and V2 of the macaque monkey , 1995, Visual Neuroscience.

[47]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[48]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[49]  A. Ioannides,et al.  Early (N70m) Neuromagnetic Signal Topography and Striate and Extrastriate Generators Following Pattern Onset Quadrant Stimulation , 2001, NeuroImage.

[50]  S. Butler,et al.  Cortical generators of the CI component of the pattern-onset visual evoked potential. , 1987, Electroencephalography and clinical neurophysiology.

[51]  S. Vanni,et al.  Foveal attention modulates responses to peripheral stimuli. , 2000, Journal of neurophysiology.

[52]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[53]  Riitta Hari,et al.  Comparison of Minimum Current Estimate and Dipole Modeling in the Analysis of Simulated Activity in the Human Visual Cortices , 2002, NeuroImage.

[54]  P. Fox,et al.  Intersubject variability of functional areas in the human visual cortex , 1998, Human brain mapping.

[55]  P. Berg,et al.  Use of prior knowledge in brain electromagnetic source analysis , 2005, Brain Topography.

[56]  J. Haueisen,et al.  Influence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head , 1997, IEEE Transactions on Biomedical Engineering.

[57]  M I Sereno,et al.  Analysis of retinotopic maps in extrastriate cortex. , 1994, Cerebral cortex.

[58]  G. V. Simpson,et al.  Flow of activation from V1 to frontal cortex in humans , 2001, Experimental Brain Research.

[59]  Mark S. Cohen Echo-Planar Imaging and Functional MRI , 2000 .

[60]  R J Ilmoniemi,et al.  Dynamic neuroimaging of brain function. , 1995, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[61]  Jean Bullier,et al.  The Timing of Information Transfer in the Visual System , 1997 .

[62]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[63]  M. Scherg,et al.  Intracerebral Sources of Human Auditory-Evoked Potentials , 1999, Audiology and Neurotology.