Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension

Lipid bilayer membranes—ubiquitous in biological systems and closely associated with cell function—exhibit rich shape-transition behaviour, including bud formation and vesicle fission. Membranes formed from multiple lipid components can laterally separate into coexisting liquid phases, or domains, with distinct compositions. This process, which may resemble raft formation in cell membranes, has been directly observed in giant unilamellar vesicles. Detailed theoretical frameworks link the elasticity of domains and their boundary properties to the shape adopted by membranes and the formation of particular domain patterns, but it has been difficult to experimentally probe and validate these theories. Here we show that high-resolution fluorescence imaging using two dyes preferentially labelling different fluid phases directly provides a correlation between domain composition and local membrane curvature. Using freely suspended membranes of giant unilamellar vesicles, we are able to optically resolve curvature and line tension interactions of circular, stripe and ring domains. We observe long-range domain ordering in the form of locally parallel stripes and hexagonal arrays of circular domains, curvature-dependent domain sorting, and membrane fission into separate vesicles at domain boundaries. By analysing our observations using available membrane theory, we are able to provide experimental estimates of boundary tension between fluid bilayer domains.

[1]  A. V. Samsonov,et al.  Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes. , 2001, Biophysical journal.

[2]  Jonas Zmuidzinas,et al.  Superconducting kinetic inductance photon detectors , 2002, SPIE Astronomical Telescopes + Instrumentation.

[3]  J. E. Jackson,et al.  SUPERCONDUCTING TUNNELING IN SINGLE-CRYSTAL AND POLYCRYSTAL FILMS OF ALUMINUM. , 1970 .

[4]  J. Jenkins,et al.  Static equilibrium configurations of a model red blood cell , 1977, Journal of mathematical biology.

[5]  R. Lipowsky,et al.  Shape transformations of vesicles with intramembrane domains. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  D. Mattis,et al.  Theory of the anomalous skin effect in normal and superconducting metals , 1958 .

[7]  Saxena,et al.  Phase separation and shape deformation of two-phase membranes , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  F. Maxfield,et al.  Role of Membrane Organization and Membrane Domains in Endocytic Lipid Trafficking , 2000, Traffic.

[9]  K. Irwin,et al.  Superconducting multiplexer for arrays of transition edge sensors , 1999 .

[10]  Anthony J. Peacock,et al.  Quasiparticle-phonon downconversion in nonequilibrium superconductors , 2000 .

[11]  L. Frunzio,et al.  Quasiparticle nonequilibrium dynamics in a superconducting Ta film , 2003 .

[12]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[13]  P. Hertel TRANSITION TEMPERATURE OF STRONG-COUPLED SUPERCONDUCTORS. , 1971 .

[14]  W. Huttner,et al.  Implications of lipid microdomains for membrane curvature, budding and fission. , 2001, Current opinion in cell biology.

[15]  Boris S. Karasik,et al.  Ultrasensitive hot-electron kinetic-inductance detectors operating well below the superconducting transition , 2002 .

[16]  G. Hilton,et al.  A Mo–Cu superconducting transition-edge microcalorimeter with 4.5 eV energy resolution at 6 keV ☆ , 2000 .

[17]  R. Lipowsky,et al.  Budding dynamics of multicomponent membranes. , 2001, Physical review letters.

[18]  G. Hilton,et al.  X‐ray detection using a superconducting transition‐edge sensor microcalorimeter with electrothermal feedback , 1996 .

[19]  J. Käs,et al.  Shape transitions and shape stability of giant phospholipid vesicles in pure water induced by area-to-volume changes. , 1991, Biophysical journal.

[20]  Reinhard Lipowsky,et al.  Domains in membranes and vesicles , 2003 .

[21]  W. Chang,et al.  The inductance of a superconducting strip transmission line , 1979 .

[22]  Brochard-Wyart,et al.  The life and death of "Bare" viscous bubbles , 1998, Science.

[23]  J. Käs,et al.  Budding and fission of vesicles. , 1993, Biophysical journal.

[24]  David Andelman,et al.  Equilibrium shape of two-component unilamellar membranes and vesicles , 1992 .

[25]  Seifert,et al.  Curvature-induced lateral phase segregation in two-component vesicles. , 1993, Physical review letters.

[26]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[27]  H. Duwe,et al.  Bending elasticity and thermal excitations of lipid bilayer vesicles: Modulation by solutes , 1990 .

[28]  David Andelman,et al.  Phase transitions in Langmuir monolayers of polar molecules , 1987 .

[29]  Reinhard Lipowsky,et al.  Budding of membranes induced by intramembrane domains , 1992 .

[30]  W. Helfrich,et al.  Undulations, steric interaction and cohesion of fluid membranes , 1984 .

[31]  S. Leibler,et al.  Ordered and curved meso-structures in membranes and amphiphilic films , 1987 .

[32]  M. Gerwinski,et al.  Theory and Possible Experiments , 1997 .

[33]  Watt W. Webb,et al.  Thermal fluctuations of large quasi-spherical bimolecular phospholipid vesicles , 1984 .

[34]  P. Devaux,et al.  Shape change and physical properties of giant phospholipid vesicles prepared in the presence of an AC electric field. , 1996, Biophysical journal.

[35]  P. Higgs,et al.  Theory of fission for two-component lipid vesicles , 1997 .

[36]  S. Moseley,et al.  Thermal detectors as X-ray spectrometers , 1984 .

[37]  Adrian T. Lee,et al.  Single superconducting quantum interference device multiplexer for arrays of low-temperature sensors , 2001 .

[38]  F. Favata,et al.  S-Cam: A spectrophotometer for optical astronomy: Performance and latest results , 2000 .

[39]  Cheng-Chung Chi,et al.  Quasiparticle and phonon lifetimes in superconductors , 1976 .

[40]  L. Frunzio,et al.  Improved energy resolution of x-ray single photon imaging spectrometers using superconducting tunnel junctions , 2001 .

[41]  Sarah L Veatch,et al.  Organization in lipid membranes containing cholesterol. , 2002, Physical review letters.

[42]  D. Twerenbold,et al.  Giaever-type superconducting tunnelling junctions as high-resolution X-ray detectors , 1986 .

[43]  M. Seul,et al.  Domain Shapes and Patterns: The Phenomenology of Modulated Phases , 1995, Science.

[44]  L. Frunzio,et al.  Time-resolved measurements of thermodynamic fluctuations of the particle number in a nondegenerate Fermi gas. , 2001, Physical review letters.

[45]  H. Mcconnell,et al.  Line tension between liquid domains in lipid monolayers , 1992 .

[46]  Moses,et al.  Instability and "pearling" states produced in tubular membranes by competition of curvature and tension. , 1994, Physical review letters.

[47]  E Gratton,et al.  Lipid rafts reconstituted in model membranes. , 2001, Biophysical journal.

[48]  Jonas Zmuidzinas,et al.  Quasi-optical slot antenna SIS mixers , 1991 .