Symmetries, local names and dynamic (de)-allocation of names

The semantics of name-passing calculi is often defined employing coalgebraic models over presheaf categories. This elegant theory lacks finiteness properties, hence it is not apt to implementation. Coalgebras over named sets, called history-dependent automata, are better suited for the purpose due to locality of names. A theory of behavioural functors for named sets is still lacking: the semantics of each language has been given in an ad-hoc way, and algorithms were implemented only for the @p-calculus. Existence of the final coalgebra for the @p-calculus was never proved. We introduce a language of accessible functors to specify history-dependent automata in a modular way, leading to a clean formulation and a generalisation of previous results, and to the proof of existence of a final coalgebra in a wide range of cases.

[1]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[2]  Joseph A. Goguen,et al.  Institutions: abstract model theory for specification and programming , 1992, JACM.

[3]  Andrew M. Pitts,et al.  A New Approach to Abstract Syntax with Variable Binding , 2002, Formal Aspects of Computing.

[4]  Samuel Staton Name-passing process calculi : operational models and structural operational semantics , 2007 .

[5]  Andrew M. Pitts,et al.  A new approach to abstract syntax involving binders , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[6]  B. Jacobs,et al.  A tutorial on (co)algebras and (co)induction , 1997 .

[7]  Daniele Turi,et al.  Semantics of name and value passing , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.

[8]  Raymond R. Devillers,et al.  Concurrent bisimulations in Petri nets , 2005, Acta Informatica.

[9]  Ugo Montanari,et al.  Pi-Calculus Early Observational Equivalence: A First Order Coalgebraic Model , 2002 .

[10]  de Ng Dick Bruijn Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .

[11]  Marino Miculan A Categorical Model of the Fusion Calculus , 2008, MFPS.

[12]  Vincenzo Ciancia,et al.  A Category of Explicit Fusions , 2008, Concurrency, Graphs and Models.

[13]  Marco Pistore,et al.  Efficient Minimization up to Location Equivalence , 1996, ESOP.

[14]  Marcello M. Bonsangue,et al.  Pi-Calculus in Logical Form , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[15]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[16]  Marco Pistore,et al.  Minimal Transition Systems for History-Preserving Bisimulation , 1997, STACS.

[17]  Eugene M. Luks,et al.  Permutation Groups and Polynomial-Time Computation , 1996, Groups And Computation.

[18]  A. Prasad Sistla,et al.  SMC: a symmetry-based model checker for verification of safety and liveness properties , 2000, TSEM.

[19]  Sam Staton,et al.  Comparing Operational Models of Name-Passing Process Calculi , 2004, CMCS.

[20]  Vincenzo Ciancia,et al.  A Name Abstraction Functor for Named Sets , 2008, CMCS.

[21]  Ugo Montanari,et al.  A Compositional Coalgebraic Model of a Fragment of Fusion Calculus , 2006, Electron. Notes Theor. Comput. Sci..

[22]  Marco Pistore,et al.  π-Calculus, structured coalgebras, and minimal HD-automata , 2000 .

[23]  Marco Pistore,et al.  Minimizing Transition Systems for Name Passing Calculi: A Co-algebraic Formulation , 2002, FoSSaCS.

[24]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[25]  Yves Diers Familles universelles de morphismes , 1978 .

[26]  Martín Abadi,et al.  A calculus for cryptographic protocols: the spi calculus , 1997, CCS '97.

[27]  James Worrell,et al.  Terminal sequences for accessible endofunctors , 1999, CMCS.

[28]  Marco Pistore,et al.  Structured coalgebras and minimal HD-automata for the pi-calculus , 2005, Theor. Comput. Sci..

[29]  Daniele Turi,et al.  Abstract Syntax and Variable Binding (Extended Abstract) , 2003 .

[30]  Wolfgang Reisig Petri Nets: An Introduction , 1985, EATCS Monographs on Theoretical Computer Science.

[31]  Marco Pistore,et al.  pi-Calculus, Structured Coalgebras, and Minimal HD-Automata , 2000, MFCS.

[32]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[33]  J. Adámek,et al.  Locally Presentable and Accessible Categories: Bibliography , 1994 .

[34]  Glynn Winskel,et al.  Presheaf Models for the pi-Calculus , 1997 .

[35]  Reiko Heckel,et al.  Compositional SOS and beyond: a coalgebraic view of open systems , 2002, Theor. Comput. Sci..

[36]  Emilio Tuosto,et al.  Coalgebraic minimization of HD-automata for the Pi-calculus using polymorphic types , 2005, Theor. Comput. Sci..

[37]  Fabio Gadducci,et al.  About permutation algebras, (pre)sheaves and named sets , 2006, High. Order Symb. Comput..

[38]  Glynn Winskel,et al.  Presheaf Models for the pi-Calculus , 1997, Category Theory and Computer Science.

[39]  Björn Victor,et al.  Relationally Staged Computations in Calculi of Mobile Processes , 2004, CMCS.

[40]  Gordon D. Plotkin,et al.  Abstract syntax and variable binding , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[41]  Davide Sangiorgi,et al.  A Fully Abstract Semantics for Causality in the Pi-Calculus , 1995, STACS.

[42]  Ugo Montanari,et al.  History-Dependent Automata , 1998 .

[43]  Corina Cı̂rstea Semantic constructions for the specification of objects , 2001, Theor. Comput. Sci..