Immunogenicity of a Fully Synthetic MUC1 Glycopeptide Antitumor Vaccine Enhanced by Poly(I:C) as a TLR3‐Activating Adjuvant

Fully synthetic MUC1 glycopeptide antitumor vaccines have a precisely specified structure and induce a targeted immune response without suppression of the immune response when using an immunogenic carrier protein. However, tumor‐associated aberrantly glycosylated MUC1 glycopeptides are endogenous structures, “self‐antigens”, that exhibit only low immunogenicity. To overcome this obstacle, a fully synthetic MUC1 glycopeptide antitumor vaccine was combined with poly(inosinic acid:cytidylic acid), poly(I:C), as a structurally defined Toll‐like receptor 3 (TLR3)‐activating adjuvant. This vaccine preparation elicited extraordinary titers of IgG antibodies which strongly bound human breast cancer cells expressing tumor‐associated MUC1. Beside the humoral response, the poly(I:C) glycopeptide vaccine induced a pro‐inflammatory environment, very important to overcome the immune‐suppressive mechanisms, and elicited a strong cellular immune response crucial for tumor elimination.

[1]  S. Hartmann,et al.  Ein durch eine synthetische Glycopeptid‐Vakzine induzierter monoklonaler Antiköper unterscheidet normale von malignen Brustzellen und ermöglicht die Diagnose von humanen Pankreaskarzinomen , 2016 .

[2]  P. Flemming,et al.  A Synthetic Glycopeptide Vaccine for the Induction of a Monoclonal Antibody that Differentiates between Normal and Tumor Mammary Cells and Enables the Diagnosis of Human Pancreatic Cancer. , 2016, Angewandte Chemie.

[3]  H. Frey,et al.  Enhanced immunogenicity of multivalent MUC1 glycopeptide antitumour vaccines based on hyperbranched polymers. , 2015, Organic & biomolecular chemistry.

[4]  R. Zentel,et al.  CpG‐Loaded Multifunctional Cationic Nanohydrogel Particles as Self‐Adjuvanting Glycopeptide Antitumor Vaccines , 2015, Advanced healthcare materials.

[5]  D. Schrijvers,et al.  Poly(I:C) as cancer vaccine adjuvant: knocking on the door of medical breakthroughs. , 2015, Pharmacology & therapeutics.

[6]  S. Hartmann,et al.  Eine vollsynthetische Vier-Komponenten-Antitumor-Vakzine mit einem MUC1-Glycopeptid und drei verschiedenen T-Helferzell- Epitopen† , 2014 .

[7]  E. Schmitt,et al.  A fully synthetic four-component antitumor vaccine consisting of a mucin glycopeptide antigen combined with three different T-helper-cell epitopes. , 2014, Angewandte Chemie.

[8]  A. M. Abdel-Aal,et al.  Immune and Anticancer Responses Elicited by Fully Synthetic Aberrantly Glycosylated MUC1 Tripartite Vaccines Modified by a TLR2 or TLR9 Agonist , 2014, Chembiochem : a European journal of chemical biology.

[9]  Kui Li,et al.  Toll-Like Receptors in Antiviral Innate Immunity , 2013, Journal of Molecular Biology.

[10]  S. H. van der Burg,et al.  Dendritic cells process synthetic long peptides better than whole protein, improving antigen presentation and T‐cell activation , 2013, European journal of immunology.

[11]  H. Kunz,et al.  The development of synthetic antitumour vaccines from mucin glycopeptide antigens. , 2013, Chemical Society reviews.

[12]  R. Clark,et al.  Robust tumor immunity to melanoma mediated by interleukin 9 , 2012, Nature Medicine.

[13]  P. Bruhns Properties of mouse and human IgG receptors and their contribution to disease models. , 2012, Blood.

[14]  S. Gendler,et al.  Intratumoral delivery of CpG-conjugated anti-MUC1 antibody enhances NK cell anti-tumor activity , 2012, Cancer Immunology, Immunotherapy.

[15]  M. Wolfert,et al.  Immune recognition of tumor-associated mucin MUC1 is achieved by a fully synthetic aberrantly glycosylated MUC1 tripartite vaccine , 2011, Proceedings of the National Academy of Sciences.

[16]  H. Sinn,et al.  Synthetic antitumor vaccines containing MUC1 glycopeptides with two immunodominant domains-induction of a strong immune response against breast tumor tissues. , 2011, Angewandte Chemie.

[17]  H. Sinn,et al.  Synthetische Antitumor‐Vakzine aus MUC1‐Glycopeptiden mit zwei immundominanten Domänen – Induktion einer starken Immunreaktion gegen Brusttumorgewebe , 2011 .

[18]  Feng Xu,et al.  Anticancer function of polyinosinic-polycytidylic acid , 2010, Cancer biology & therapy.

[19]  J. Ravetch,et al.  FcγRIV deletion reveals its central role for IgG2a and IgG2b activity in vivo , 2010, Proceedings of the National Academy of Sciences.

[20]  M. L. Alvarez,et al.  Analysis of a cholera toxin B subunit (CTB) and human mucin 1 (MUC1) conjugate protein in a MUC1-tolerant mouse model , 2010, Cancer Immunology, Immunotherapy.

[21]  M. Taura,et al.  TLR3 induction by anticancer drugs potentiates poly I:C‐induced tumor cell apoptosis , 2010, Cancer science.

[22]  E. Schmitt,et al.  Fully synthetic vaccines consisting of tumor-associated MUC1 glycopeptides and a lipopeptide ligand of the Toll-like receptor 2. , 2010, Angewandte Chemie.

[23]  T. Becker,et al.  Vollsynthetische Vakzinen aus tumorassoziierten MUC1‐Glycopeptiden und einem Lipopeptid‐Liganden des Toll‐like Rezeptors 2 , 2010 .

[24]  C. Figdor,et al.  Toll-like receptor expression and function in human dendritic cell subsets: implications for dendritic cell-based anti-cancer immunotherapy , 2010, Cancer Immunology, Immunotherapy.

[25]  J. Berek,et al.  TLR3 agonists as immunotherapeutic agents. , 2010, Immunotherapy.

[26]  Himanshu Kumar,et al.  Toll-like receptors and innate immunity. , 2009, Biochemical and biophysical research communications.

[27]  Yian-Ling Chen,et al.  The TLR3 agonist poly(I:C) targets CD8+ T cells and augments their antigen-specific responses upon their adoptive transfer into naïve recipient mice. , 2009, Vaccine.

[28]  H. Bontkes,et al.  Toll-like receptor agonists and invariant natural killer T-cells enhance antibody-dependent cell-mediated cytotoxicity (ADCC). , 2008, Cancer letters.

[29]  Jun Yan,et al.  Targeting of antigens to B cells augments antigen-specific T-cell responses and breaks immune tolerance to tumor-associated antigen MUC1. , 2008, Blood.

[30]  M. Cheever Twelve immunotherapy drugs that could cure cancers. , 2008, Immunological reviews.

[31]  K. Ishii,et al.  Cutting Edge: Cooperation of IPS-1- and TRIF-Dependent Pathways in Poly IC-Enhanced Antibody Production and Cytotoxic T Cell Responses , 2008, The Journal of Immunology.

[32]  M. Wolfert,et al.  Robust immune responses elicited by a fully synthetic three-component vaccine. , 2007, Nature chemical biology.

[33]  Z. Berneman,et al.  Proinflammatory response of human leukemic cells to dsRNA transfection linked to activation of dendritic cells , 2007, Leukemia.

[34]  Ravibhushan Singh,et al.  MUC1: A target molecule for cancer therapy , 2007, Cancer biology & therapy.

[35]  E. Akporiaye,et al.  MUC1-specific immune therapy generates a strong anti-tumor response in a MUC1-tolerant colon cancer model. , 2007, Vaccine.

[36]  J. Taylor‐Papadimitriou,et al.  Identification of a novel cancer-specific immunodominant glycopeptide epitope in the MUC1 tandem repeat. , 2007, Glycobiology.

[37]  D. Fuchs,et al.  Antitumoral activity of interferon-γ involved in impaired immune function in cancer patients , 2006 .

[38]  Richard A Flavell,et al.  Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[39]  S. Lebecque,et al.  TLR3 Can Directly Trigger Apoptosis in Human Cancer Cells1 , 2006, The Journal of Immunology.

[40]  S. Akira,et al.  Pathogen Recognition and Innate Immunity , 2006, Cell.

[41]  E. Schmitt,et al.  A fully synthetic vaccine consisting of a tumor-associated glycopeptide antigen and a T-cell epitope for the induction of a highly specific humoral immune response. , 2005, Angewandte Chemie.

[42]  H. Kunz,et al.  Eine vollsynthetische Vakzine aus einem tumorassoziierten Glycopeptid‐Antigen und einem T‐Zell‐Epitop zur Induktion einer hochspezifischen humoralen Immunantwort , 2005 .

[43]  S. Rijpkema,et al.  An immuno-diffusion assay to assess the protective antigen content of anthrax vaccine. , 2005, Vaccine.

[44]  M. Mason,et al.  The rationale for combined chemo/immunotherapy using a Toll-like receptor 3 (TLR3) agonist and tumour-derived exosomes in advanced ovarian cancer. , 2005, Vaccine.

[45]  Stephen Kent,et al.  The viral mimic, polyinosinic:polycytidylic acid, induces fever in rats via an interleukin-1-dependent mechanism. , 2004, American journal of physiology. Regulatory, integrative and comparative physiology.

[46]  D. Klinman Immunotherapeutic uses of CpG oligodeoxynucleotides , 2004, Nature Reviews Immunology.

[47]  Hans-Georg Rammensee,et al.  The Tübingen approach: identification, selection, and validation of tumor-associated HLA peptides for cancer therapy , 2004, Cancer Immunology, Immunotherapy.

[48]  Christophe Caux,et al.  The Inducible CXCR3 Ligands Control Plasmacytoid Dendritic Cell Responsiveness to the Constitutive Chemokine Stromal Cell–derived Factor 1 (SDF-1)/CXCL12 , 2003, The Journal of experimental medicine.

[49]  Hideo Negishi,et al.  Integration of interferon-α/β signalling to p53 responses in tumour suppression and antiviral defence , 2003, Nature.

[50]  L. K. Ely,et al.  Dissecting the role of peptides in the immune response: theory, practice and the application to vaccine design , 2003, Journal of peptide science : an official publication of the European Peptide Society.

[51]  R. Flavell,et al.  Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3 , 2001, Nature.

[52]  H. Kunz,et al.  Zur Entwicklung von Antitumor‐Impfstoffen: ein synthetisches Konjugat aus tumorassoziiertem MUC1‐Glycopeptidantigen und dem Tetanustoxin‐Epitop , 2001 .

[53]  W. Dippold,et al.  Towards the Development of Antitumor Vaccines: A Synthetic Conjugate of a Tumor-Associated MUC1 Glycopeptide Antigen and a Tetanus Toxin Epitope. , 2001, Angewandte Chemie.

[54]  J. Taylor‐Papadimitriou,et al.  MUC1 and cancer. , 1999, Biochimica et biophysica acta.

[55]  T. Taniguchi,et al.  Type I interferons are essential mediators of apoptotic death in virally infected cells , 1998, Genes to cells : devoted to molecular & cellular mechanisms.

[56]  J. Langland,et al.  When two strands are better than one: the mediators and modulators of the cellular responses to double-stranded RNA. , 1996, Virology.

[57]  C. Leclerc,et al.  Identification of a T-cell epitope adjacent to neutralization antigenic site 1 of poliovirus type 1 , 1991, Journal of virology.

[58]  J. Taylor‐Papadimitriou,et al.  A short sequence, within the amino acid tandem repeat of a cancer‐associated mucin, contains immunodominant epitopes , 1989, International journal of cancer.

[59]  J. Broderson A retrospective review of lesions associated with the use of Freund's adjuvant. , 1989, Laboratory animal science.

[60]  J. Rothbard,et al.  A highly immunogenic region of a human polymorphic epithelial mucin expressed by carcinomas is made up of tandem repeats. , 1988, The Journal of biological chemistry.

[61]  C. Leclerc,et al.  Carrier-induced epitopic suppression, a major issue for future synthetic vaccines. , 1985, Journal of immunology.

[62]  P. Marrack,et al.  Antigen presentation by supported planar membranes containing affinity-purified I-Ad. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[63]  H. Grey,et al.  Antigen recognition by H-2-restricted T cells. II. A tryptic ovalbumin peptide that substitutes for processed antigen. , 1984, Journal of immunology.

[64]  Leonore A. Herzenberg,et al.  Carrier-priming leads to hapten-specific suppression , 1980, Nature.

[65]  H. Chapel,et al.  Report of nine cases of accidental injury to man with Freund's complete adjuvant. , 1976, Clinical and experimental immunology.

[66]  A. Long,et al.  A human cell line from a pleural effusion derived from a breast carcinoma. , 1973, Journal of the National Cancer Institute.

[67]  S. Akira,et al.  Toll-like receptors. , 2003, Annual review of immunology.