An Empirical Central Limit Theorem with applications to copulas under weak dependence

We state a multidimensional Functional Central Limit Theorem for weakly dependent random vectors. We apply this result to copulas. We get the weak convergence of the empirical copula process and of its smoothed version. The finite dimensional convergence of smoothed copula densities is also proved. A new definition and the theoretical analysis of conditional copulas and their empirical counterparts are provided.

[1]  Jérôme Dedecker,et al.  A new covariance inequality and applications , 2003 .

[2]  P. Doukhan Mixing: Properties and Examples , 1994 .

[3]  M. Wegkamp,et al.  Weak Convergence of Empirical Copula Processes , 2004 .

[4]  O. Scaillet Nonparametric Estimation and Sensitivity Analysis of Expected Shortfall , 2004 .

[5]  P. Massart,et al.  Invariance principles for absolutely regular empirical processes , 1995 .

[6]  P. Doukhan,et al.  A new weak dependence condition and applications to moment inequalities , 1999 .

[7]  P. Doukhan,et al.  Weak Dependence: Models and Applications , 2002 .

[8]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[9]  Andrew J. Patton Modelling Time-Varying Exchange Rate Dependence Using the Conditional Copula , 2001 .

[10]  C. Withers Central Limit Theorems for dependent variables. I , 1981 .

[11]  P. Gänssler Weak Convergence and Empirical Processes - A. W. van der Vaart; J. A. Wellner. , 1997 .

[12]  O. Scaillet,et al.  Nonparametric Estimation of Copulas for Time Series , 2002 .

[13]  J. Rosenberg Nonparametric Pricing of Multivariate Contingent Claims , 2000 .

[14]  Rates in the Empirical Central Limit Theorem for Stationary Weakly Dependent Random Fields , 2002 .

[15]  Olivier Scaillet,et al.  Sensitivity Analysis of Values at Risk , 2000 .

[16]  Xiaohong Chen,et al.  Estimation of Copula-Based Semiparametric Time Series Models , 2006 .

[17]  E. Rio,et al.  Théorie asymptotique de processus aléatoires faiblement dépendants , 2000 .

[18]  Jean-David Fermanian,et al.  Goodness-of-fit tests for copulas , 2005 .

[19]  Peter J. Bickel,et al.  Convergence Criteria for Multiparameter Stochastic Processes and Some Applications , 1971 .

[20]  P. Gaenssler,et al.  Seminar on Empirical Processes , 1987 .

[21]  R. Nelsen An Introduction to Copulas , 1998 .

[22]  D. Surgailis,et al.  ARCH-type bilinear models with double long memory , 2002 .