Root Typ: a generic model to depict and analyse the root system architecture

Dynamic models of root system development and architecture integrate various developmental processes and let simulate multiple dynamic interactions. They are recognised as valuable tools to study the soil–plant–atmosphere continuum. In the recent years, some models have emerged from fractal descriptions. Others arose from developmental approaches but most efforts met little success for genericity. Among the difficulties with models are their growing complexity and they inability to detail evenly all important mechanisms often due to a deficit of independent and suitable data for model testing. We propose here a generic model called `Root Typ' dedicated to quantitative and global analyses of root system architectures and simplified representation of architectural diversity. It aims at (i) detailing evenly a large range of developmental processes, (ii) generalising the concept of root type and (iii) representing in a very simplified way soil effects on developmental processes. The model implements several developmental processes including: root emission, axial and radial growth, sequential branching, reiteration, transition, decay and abscission, which are all discussed in details. Finally, it's ability to mimic a diversity of root architectures is tested against representative root systems depicted in the book of Kutschera (1960) which represents an independent database collected on a large number of plant species and soil conditions, and gives an overall synthetic view upon root systems.

[1]  R. T. Mitchell,et al.  Comparison of rates of natural senescence of the root cortex of wheat (with and without mildew infection), barley, oats and rye , 1985, Plant and Soil.

[2]  G. T. Varney,et al.  The branch roots of Zea. II. Developmental loss of the apical meristem in field‐grown roots , 1991 .

[3]  Yannick Le Roux,et al.  Développement et polymorphisme racinaires chez de jeunes semis d'hévéa (Hevea brasiliensis) , 1994 .

[4]  Betty Klepper,et al.  Root and Shoot Development in Winter Wheat1 , 1984 .

[5]  Francois Tardieu,et al.  Trajectory of the nodal roots of maize in fields with low mechanical constraints , 1990, Plant and Soil.

[6]  Prof. Dr. Francis Hallé,et al.  Tropical Trees and Forests , 1978, Springer Berlin Heidelberg.

[7]  Alastair H. Fitter,et al.  Characteristics and Functions of Root Systems , 2002 .

[8]  L. Pagès,et al.  [Geotropic reaction of different types of roots in Hevea brasiliensis]. , 1996, Canadian journal of botany. Journal canadien de botanique.

[9]  Robert D. Davis,et al.  SimRoot: Modelling and visualization of root systems , 2004, Plant and Soil.

[10]  J. Hopmans,et al.  Simultaneous modeling of transient three-dimensional root growth and soil water flow , 1994, Plant and Soil.

[11]  Hervé Rey,et al.  Architecture and development of the oil-palm (Elaeis guineensis Jacq.) root system , 1997, Plant and Soil.

[12]  A. J. Diggle,et al.  ROOTMAP—a model in three-dimensional coordinates of the growth and structure of fibrous root systems , 1988, Plant and Soil.

[13]  S. D. Logsdon,et al.  INTERACTIONS OF EARTHWORMS WITH SOIL PHYSICAL CONDITIONS INFLUENCING PLANT GROWTH , 1992 .

[14]  Gail W. T. Wilson,et al.  Architectural analysis of plant root systems 1. Architectural correlates of exploitation efficiency , 1991 .

[15]  J. D. Hesketh,et al.  PREEXISTING CHANNELS AND SOYBEAN ROOTING PATTERNS , 1986 .

[16]  Ming Hung Wong,et al.  Effects of air-filled soil porosity and aeration on the initiation and growth of secondary roots of maize (Zea mays) , 1996, Plant and Soil.

[17]  A. R. Ennos,et al.  A Comparative Study of the Anchorage Systems of Himalayan Balsam Impatiens glandulifera and Mature Sunflower Helianthus annuus , 1993 .

[18]  K. L. Poff,et al.  Characterization of thermotropism in primary roots of maize: Dependence on temperature and temperature gradient, and interaction with gravitropism , 2004, Planta.

[19]  Hervé Rey,et al.  Modelling and simulation of the architecture and development of the oil-palm (t Elaeis guineensis Jacq.) root system , 1997, Plant and Soil.

[20]  A. Fußeder,et al.  The longevity and activity of the primary root of maize , 1987, Plant and Soil.

[21]  W. A. Cannon,et al.  A Tentative Classification of Root Systems , 1949 .

[22]  A. Eshel,et al.  Functional Diversity of Various Constituents of a Single Root System , 2002 .

[23]  J. F. Sillon,et al.  Fractal analysis of the root architecture of Gliricidia sepium for the spatial prediction of root branching, size and mass: model development and evaluation in agroforestry , 1999, Plant and Soil.

[24]  A. J. Diggle,et al.  An experimental procedure for obtaining input parameters for the “ROOTMAP” root simulation program for peas (Pisum sativum L.) , 2004, Plant and Soil.

[25]  Loïc Pagès,et al.  Modelling the influence of assimilate availability on root growth and architecture , 1998, Plant and Soil.

[26]  F. Tardieu,et al.  Analysis of the spatial variability of maize root density , 1988, Plant and Soil.

[27]  Lore Kutschera,et al.  Wurzelatlas mitteleuropäischer Ackerunkräuter und Kulturpflanzen , 1960 .

[28]  Meine van Noordwijk,et al.  Proximal root diameter as predictor of total root size for fractal branching models , 1994, Plant and Soil.

[29]  D.C.F. Fayle Archy and Diameter of Primary Xylem in Horizontal and Vertical Roots of Red Pine , 1975 .

[30]  Pavel Grabarnik,et al.  Geometrical properties of simulated maize root systems: consequences for length density and intersection density , 1998, Plant and Soil.

[31]  T. Kira,et al.  A QUANTITATIVE ANALYSIS OF PLANT FORM-THE PIPE MODEL THEORY : I.BASIC ANALYSES , 1964 .

[32]  Claude Edelin,et al.  Premires donnes sur l'architecture compare des systmes racinaires et caulinaires , 1994 .

[33]  Hideyuki Takahashi,et al.  Hydrotropism in roots: sensing of a gradient in water potential by the root cap , 1995, Planta.

[34]  Koou Yamazaki,et al.  The Successive Stem Growth and Its Relation to the Diameters and the Number of Primary Roots on Main Axes of Rice Plants , 1986 .

[35]  Loïc Pagès,et al.  Study of differences between vertical root maps observed in a maize crop and simulated maps obtained using a model for the three-dimensional architecture of the root system , 1996, Plant and Soil.

[36]  R. F. Sutton,et al.  Root and Root System Terminology , 1983 .

[37]  Loïc Pagès,et al.  Modélisation stochastique de la croissance et du développement du système racinaire de jeunes pêchers. I : Estimation et validation du modèle , 1992 .

[38]  Nathalie Gaertner,et al.  Mod? lisation objet avec uml , 1997 .

[39]  Claude Varlet-Grancher,et al.  Rythme d'apparition des racines primaires du maïs (Zea mays L.). III. Variations observées au champ , 1988 .

[40]  M. P. Coutts,et al.  Root architecture and tree stability , 1983, Plant and Soil.

[41]  Francis Kahn,et al.  Analyse structurale des systèmes racinaires des plantes ligneuses de la forêt tropicale dense humide , 1977 .

[42]  Loïc Pagès,et al.  Periodicity in the development of the root system of young rubber trees (Hevea brasiliensis Müell. Arg.): relationship with shoot development , 1996 .

[43]  Y. Guédon,et al.  Architectural analysis and modelling of the branching process of the young oil-palm root system , 1995, Plant and Soil.

[44]  C. Doussan,et al.  Architectural analysis and synthesis of the plum tree root system in an orchard using a quantitative modelling approach , 2003, Plant and Soil.

[45]  Meine van Noordwijk,et al.  Proximal root diameter as predictor of total root size for fractal branching models , 1994, Plant and Soil.

[46]  J. Hopmans,et al.  Transient three-dimensional modeling of soil water and solute transport with simultaneous root growth, root water and nutrient uptake , 1998, Plant and Soil.

[47]  Loïc Pagès,et al.  SARAH : modèle de simulation de la croissance, du développement et de l'architecture des systèmes racinaires , 1988 .

[48]  W. A. Charlton THE ROOT SYSTEM OF LINARIA VULGARIS MILL. II: DIFFERENTIATION OF ROOT TYPES , 1967 .

[49]  B. Nicoll,et al.  Orientation of the lateral roots of trees: II. Hydrotropic and gravitropic responses of lateral roots of Sitka spruce grown in air at different humidities. , 1993, The New phytologist.

[50]  M. P. Coutts,et al.  Developmental processes in tree root systems , 1987 .

[51]  Loïc Pagès,et al.  MODELLING OF THE HYDRAULIC ARCHITECTURE OF ROOT SYSTEMS : AN INTEGRATED APPROACH TO WATER ABSORPTION : MODEL DESCRIPTION , 1998 .

[52]  Eberhard Knobloch Leonhard Eulers Mathematische Notizbücher , 1989 .

[53]  Roelof A. A. Oldeman,et al.  L'architecture de la forêt guyanaise , 1977 .

[54]  F. Tardieu,et al.  Analysis of the spatial variability of maize root density , 1988, Plant and Soil.

[55]  L. Pagès,et al.  Modelling minirhizotron observations to test experimental procedures , 1997, Plant and Soil.

[56]  M. P. Coutts,et al.  Factors affecting the direction of growth of tree roots , 1989 .

[57]  Loïc Pagès,et al.  Modélisation de l'architecture racinaire , 1995 .

[58]  A. J. Diggle,et al.  Modelling pea (Pisum sativum) root growth in drying soil. A comparison between observations and model predictions , 1995 .

[59]  Loïc Pagès,et al.  Evaluation of parameters describing the root system architecture of field grown maize plants (Zea mays L.) , 1994, Plant and Soil.

[60]  Marie-Odile Jordan,et al.  Rythme d'apparition des racines primaires du maïs (Zea mays L.) I. — Etude détaillée pour une variété en un lieu donné , 1985 .

[61]  Arthur Riedacker,et al.  Modifications expérimentales de la morphogénèse et des géotropismes dans le système racinaire de jeunes chênes , 1982 .

[62]  L. Pagès,et al.  A simulation model of the three-dimensional architecture of the maize root system , 1989, Plant and Soil.

[63]  Alastair H. Fitter,et al.  Fractal Characterization of Root System Architecture , 1992 .