Symbolic Data Analysis: another look at the interaction of Data Mining and Statistics
暂无分享,去创建一个
[1] Vladimir Batagelj,et al. Clustering large data sets described with discrete distributions and its application on TIMSS data set , 2011, Stat. Anal. Data Min..
[2] Donato Malerba,et al. Comparing Dissimilarity Measures For Probabilistic Symbolic Objects , 2002 .
[3] Paula Brito. Symbolic objects: order structure and pyramidal clustering , 1995, Ann. Oper. Res..
[4] G. Grisetti,et al. Further Reading , 1984, IEEE Spectrum.
[5] Monique Noirhomme-Fraiture,et al. Symbolic Data Analysis and the SODAS Software , 2008 .
[6] G. Choquet. Theory of capacities , 1954 .
[7] L. Billard,et al. From the Statistics of Data to the Statistics of Knowledge , 2003 .
[8] Yves Lechevallier,et al. Dynamic Cluster Methods for Interval Data Based on Mahalanobis Distances , 2004 .
[9] Francisco de A. T. de Carvalho,et al. Hierarchical and Pyramidal Clustering , 2008 .
[10] R.M.C.R. de Souza,et al. Dynamic clustering of interval data based on adaptive Chebyshev distances , 2004 .
[11] Francesco Palumbo,et al. Principal Component Analysis for Non-Precise Data , 2005 .
[12] Alison L Gibbs,et al. On Choosing and Bounding Probability Metrics , 2002, math/0209021.
[13] Hans-Hermann Bock. 6. Symbolic Data Analysis , 2003 .
[14] Francisco de A. T. de Carvalho,et al. Adaptive Batch SOM for Multiple Dissimilarity Data Tables , 2011, 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence.
[15] Francisco de A. T. de Carvalho,et al. Clustering of Interval-Valued Data Using Adaptive Squared Euclidean Distances , 2004, ICONIP.
[16] Paola Zuccolotto. Principal components of sample estimates: an approach through symbolic data analysis , 2007, Stat. Methods Appl..
[17] L. Billard,et al. Symbolic Regression Analysis , 2002 .
[18] Edwin Diday. Introduction à l'approche symbolique en analyse des données , 1989 .
[19] Antonio Irpino,et al. Dynamic Clustering of Histogram Data: Using the Right Metric , 2007 .
[20] Paula Brito,et al. Symbolic Clustering of Constrained Probabilistic Data , 2003 .
[21] Miin-Shen Yang,et al. Self-organizing map for symbolic data , 2012, Fuzzy Sets Syst..
[22] Francisco de A. T. de Carvalho,et al. Two Partitional Methods for Interval-Valued Data Using Mahalanobis Distances , 2004, IBERAMIA.
[23] P. Brito,et al. Modelling interval data with Normal and Skew-Normal distributions , 2012 .
[24] Fabrice Rossi,et al. Multi-layer Perceptron on Interval Data ? , 2002 .
[25] Antonio Irpino,et al. Ordinary Least Squares for Histogram Data Based on Wasserstein Distance , 2010, COMPSTAT.
[26] G. Polaillon. Interpretation and Reduction of Galois Lattices of Complex Data , 1998 .
[27] D Simon. Introduction à l'analyse des données symboliques , 2006 .
[28] Paula Brito,et al. Probabilistic clustering of interval data , 2015, Intell. Data Anal..
[29] Francisco de A. T. de Carvalho,et al. Fuzzy c-means clustering methods for symbolic interval data , 2007, Pattern Recognit. Lett..
[30] E. Diday,et al. Extension de l'analyse en composantes principales à des données de type intervalle , 1997 .
[31] Marie Chavent,et al. Divisive Monothetic Clustering for Interval and Histogram-valued Data , 2012, ICPRAM.
[32] Donato Malerba,et al. Dissimilarity and Matching , 2008 .
[33] Marie Chavent,et al. A monothetic clustering method , 1998, Pattern Recognit. Lett..
[34] J. Arroyo,et al. Forecasting histogram time series with k-nearest neighbours methods , 2009 .
[35] Carlos Maté,et al. Electric power demand forecasting using interval time series: A comparison between VAR and iMLP , 2010 .
[36] Javier Arroyo,et al. Forecasting with Interval and Histogram Data. Some Financial Applications , 2011 .
[37] Paula Brito,et al. Modeling Interval Time Series with Space–Time Processes , 2015 .
[38] Hans-Hermann Bock,et al. Visualizing Symbolic Data by Kohonen Maps , 2008 .
[39] André Hardy,et al. Clustering of Symbolic Objects Described by Multi-Valued and Modal Variables , 2004 .
[40] Peter Walley,et al. Towards a unified theory of imprecise probability , 2000, Int. J. Approx. Reason..
[41] Edwin Diday,et al. An introduction to symbolic data analysis and the SODAS software , 2003, Intell. Data Anal..
[42] Edwin Diday,et al. Growing a tree classifier with imprecise data , 2000, Pattern Recognit. Lett..
[43] P. Cazes. Régression par boule et par l'analyse des correspondances , 1976 .
[44] Hani Hamdan,et al. Self-organizing map based on hausdorff distance for interval-valued data , 2011, 2011 IEEE International Conference on Systems, Man, and Cybernetics.
[45] Yves Lechevallier,et al. Partitional clustering algorithms for symbolic interval data based on single adaptive distances , 2009, Pattern Recognit..
[46] P. Brito,et al. Structuring probabilistic data by Galois lattices , 2005 .
[47] Hans-Hermann Bock,et al. Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data , 2000 .
[48] Francisco de A. T. de Carvalho,et al. Constrained linear regression models for symbolic interval-valued variables , 2010, Comput. Stat. Data Anal..
[49] Hans-Hermann Bock,et al. Analysis of Symbolic Data , 2000 .
[50] L. Billard,et al. Likelihood functions and some maximum likelihood estimators for symbolic data , 2008 .
[51] Javier Arroyo,et al. Time series modeling of histogram-valued data: The daily histogram time series of S&P500 intradaily returns , 2012 .
[52] G. Cordeiro,et al. Bivariate symbolic regression models for interval-valued variables , 2011 .
[53] Paula Brito. Symbolic Clustering Of Probabilistic Data , 1998 .
[54] Marc Csernel,et al. Usual operations with symbolic data under normal symbolic form , 1999 .
[55] F. Coolen,et al. Interval-valued regression and classication models in the framework of machine learning , 2011 .
[56] Paula Brito,et al. Linear discriminant analysis for interval data , 2006, Comput. Stat..
[57] S. J. Simoff. Handling uncertainty in neural networks: an interval approach , 1996, Proceedings of International Conference on Neural Networks (ICNN'96).
[58] Giuseppe Giordano,et al. Social Networks as Symbolic Data , 2014 .
[59] Antonio Irpino,et al. Comparing Histogram Data Using a Mahalanobis–Wasserstein Distance , 2008 .
[60] Francisco de A. T. de Carvalho,et al. Centre and Range method for fitting a linear regression model to symbolic interval data , 2008, Comput. Stat. Data Anal..
[61] Géraldine Polaillon,et al. Homogeneity and Stability in Conceptual Analysis , 2011, CLA.
[62] Francisco de A. T. de Carvalho,et al. Unsupervised pattern recognition models for mixed feature-type symbolic data , 2010, Pattern Recognit. Lett..
[63] Hans-Hermann Bock,et al. Dynamic clustering for interval data based on L2 distance , 2006, Comput. Stat..
[64] Francisco de A. T. de Carvalho,et al. Proximity Coefficients between Boolean symbolic objects , 1994 .
[65] Edwin Diday,et al. Generalization of the Principal Components Analysis to Histogram Data , 2000 .
[66] Thanh-Nghi Do,et al. Kernel Methods and Visualization for Interval Data Mining , 2005 .
[67] F. Plastria,et al. Classification problems with imprecise data through separating hyperplanes , 2007 .
[68] Hisao Ishibuchi,et al. DISCRIMINANT ANALYSIS OF MULTI-DIMENSIONAL INTERVAL DATA AND ITS APPLICATION TO CHEMICAL SENSING , 1990 .
[69] Rosanna Verde,et al. Data Stream Summarization by Histograms Clustering , 2013, Statistical Models for Data Analysis.
[70] Yves Lechevallier,et al. New clustering methods for interval data , 2006, Comput. Stat..
[71] Witold Pedrycz,et al. Granular Computing: Analysis and Design of Intelligent Systems , 2013 .
[72] Giancarlo Ragozini,et al. Analysis and Modeling of Complex Data in Behavioral and Social Sciences , 2014 .
[73] Francisco de A. T. de Carvalho,et al. Fuzzy K-means clustering algorithms for interval-valued data based on adaptive quadratic distances , 2010, Fuzzy Sets Syst..
[74] Antonio Irpino,et al. Optimal histogram representation of large data sets: Fisher vs piecewise linear approximation , 2007, EGC.
[75] Herman Stekler,et al. Measuring consensus in binary forecasts: NFL game predictions , 2009 .
[76] D. Dubois,et al. Properties of measures of information in evidence and possibility theories , 1987 .
[77] Chenyi Hu,et al. On interval weighted three-layer neural networks , 1998, Proceedings 31st Annual Simulation Symposium.
[78] L. Billard,et al. Regression Analysis for Interval-Valued Data , 2000 .
[79] Francisco de A. T. de Carvalho,et al. Clustering of interval data based on city-block distances , 2004, Pattern Recognit. Lett..
[80] Manabu Ichino. The quantile method for symbolic principal component analysis , 2011, Stat. Anal. Data Min..
[81] Donato Malerba,et al. Comparing Dissimilarity Measures for Symbolic Data Analysis , 2001 .
[82] Yves Lechevallier,et al. DIVCLUS-T: A monothetic divisive hierarchical clustering method , 2007, Comput. Stat. Data Anal..
[83] R. Vignes. Caracterisation automatique de groupes biologiques , 1991 .
[84] A T de CarvalhoFrancisco de,et al. Centre and Range method for fitting a linear regression model to symbolic interval data , 2008 .
[85] Jirí Síma,et al. Neural expert systems , 1995, Neural Networks.
[86] Francisco de A. T. de Carvalho,et al. Forecasting models for interval-valued time series , 2008, Neurocomputing.
[87] Paula Brito,et al. Distribution and Symmetric Distribution Regression Model for Histogram-Valued Variables , 2013 .
[88] Hans-Hermann Bock. CLUSTERING ALGORITHMS AND KOHONEN MAPS FOR SYMBOLIC DATA(Symbolic Data Analysis) , 2003 .
[89] Miin-Shen Yang,et al. Fuzzy clustering algorithms for mixed feature variables , 2004, Fuzzy Sets Syst..
[90] Jean-Paul Rasson,et al. Unsupervised Divisive Classification , 2008 .
[91] Francisco de A. T. de Carvalho,et al. Selected Contributions in Data Analysis and Classification , 2007 .
[92] Monique Noirhomme-Fraiture,et al. Far beyond the classical data models: symbolic data analysis , 2011, Stat. Anal. Data Min..
[93] Donato Malerba,et al. Classification of symbolic objects: A lazy learning approach , 2006, Intell. Data Anal..
[94] Paolo Giordani,et al. A comparison of three methods for principal component analysis of fuzzy interval data , 2006, Comput. Stat. Data Anal..
[95] Mohamed A. Ismail,et al. Fuzzy clustering for symbolic data , 1998, IEEE Trans. Fuzzy Syst..
[96] Davide Anguita,et al. Interval discriminant analysis using support vector machines , 2007, ESANN.
[97] Javier Arroyo Gallardo. Métodos de predicción para series temporales de intervalos e histogramas , 2008 .
[98] Edwin Diday,et al. Adaptation of interval PCA to symbolic histogram variables , 2012, Adv. Data Anal. Classif..
[99] Chih-Cheng Tseng,et al. Robust Interval Competitive Agglomeration Clustering Algorithm with Outliers , 2010 .
[100] Hani Hamdan,et al. Self-organizing map based on L2 distance for interval-valued data , 2011, 2011 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI).
[101] Edwin Diday,et al. Probabilist, possibilist and belief objects for knowledge analysis , 1995, Ann. Oper. Res..
[102] Francisco de A. T. de Carvalho,et al. A batch self-organizing maps algorithm based on adaptive distances , 2011, The 2011 International Joint Conference on Neural Networks.
[103] Carlos A. Coelho. Generalized canonical analysis. , 1992 .
[104] F. Hosseinzadeh Lotfi,et al. Discriminant analysis of interval data using Monte Carlo method in assessment of overlap , 2007, Appl. Math. Comput..
[105] Kin Keung Lai,et al. Interval Time Series Analysis with an Application to the Sterling-Dollar Exchange Rate , 2008, J. Syst. Sci. Complex..
[106] Edwin Diday,et al. Symbolic Data Analysis: Conceptual Statistics and Data Mining (Wiley Series in Computational Statistics) , 2007 .
[107] Géraldine Polaillon,et al. Classification Conceptuelle avec Généralisation par Intervalles , 2012, EGC.
[108] Philippe Nivlet,et al. Interval Discriminant Analysis: An Efficient Method to Integrate Errors In Supervised Pattern Recognition , 2001, ISIPTA.
[109] Antonio Irpino,et al. A New Wasserstein Based Distance for the Hierarchical Clustering of Histogram Symbolic Data , 2006, Data Science and Classification.
[110] Yves Lechevallier,et al. Adaptive Hausdorff distances and dynamic clustering of symbolic interval data , 2006, Pattern Recognit. Lett..