QSPR Using MOLGEN-QSPR: The Example of Haloalkane Boiling Points

MOLGEN-QSPR is a software newly developed for use in quantitative structure property relationships (QSPR) work. It allows to import, to manually edit, or to generate chemical structures, to detect duplicate structures, to import or to manually input property values, to calculate the values of a broad pool of molecular descriptors, to establish QSPR equations (models), and using such models to predict unknown property values. In connection with the molecule generator MOLGEN, MOLGEN-QSPR is able to predict property values for all compounds in a predetermined structure space (inverse QSPR). Some of the features of MOLGEN-QSPR are demonstrated on the example of haloalkane boiling points. The data basis used here is broader than in previous studies, and the models established are both more precise and simpler than those previously reported.

[1]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[2]  Milan Randic,et al.  Orthogonal molecular descriptors , 1991 .

[3]  Alexandru T. Balaban,et al.  Correlations between chemical structure and normal boiling points of halogenated alkanes C1-C4 , 1992 .

[4]  Igor I. Baskin,et al.  Inverse problem in QSAR/QSPR studies for the case of topological indexes characterizing molecular shape (Kier indices) , 1993, J. Chem. Inf. Comput. Sci..

[5]  Lemont B. Kier,et al.  The generation of molecular structures from a graph-based QSAR equation , 1993 .

[6]  Subhash C. Basak,et al.  Correlation between Structure and Normal Boiling Points of Haloalkanes C1-C4 Using Neural Networks , 1994, J. Chem. Inf. Comput. Sci..

[7]  Vladimir Vapnik,et al.  The Nature of Statistical Learning , 1995 .

[8]  Subhash C. Basak,et al.  Estimation of the Normal Boiling Points of Haloalkanes Using Molecular Similarity , 1996 .

[9]  Jiri Pospichal,et al.  Simulated Annealing Construction of Molecular Graphs with Required Properties , 1996, J. Chem. Inf. Comput. Sci..

[10]  Milan Randic,et al.  On Characterization of Chemical Structure , 1997, J. Chem. Inf. Comput. Sci..

[11]  Alan R. Katritzky,et al.  Normal Boiling Points for Organic Compounds: Correlation and Prediction by a Quantitative Structure-Property Relationship , 1998, J. Chem. Inf. Comput. Sci..

[12]  Ovidiu Ivanciuc,et al.  Quantitative structure-property relationship study of normal boiling points for halogen-/ oxygen-/ sulfur-containing organic compounds using the CODESSA program , 1998 .

[13]  Terry S. Carlton Correlation of Boiling Points with Molecular Structure for Chlorofluoroethanes , 1998, J. Chem. Inf. Comput. Sci..

[14]  Gordon M. Crippen,et al.  Prediction of Physicochemical Parameters by Atomic Contributions , 1999, J. Chem. Inf. Comput. Sci..

[15]  Gerta Rücker,et al.  On Topological Indices, Boiling Points, and Cycloalkanes , 1999, J. Chem. Inf. Comput. Sci..

[16]  Danail Bonchev,et al.  The Overall Wiener Index-A New Tool for Characterization of Molecular Topology , 2001, J. Chem. Inf. Comput. Sci..

[17]  A. L. Horvath,et al.  Boiling points of halogenated organic compounds. , 2001, Chemosphere.

[18]  D. Bonchev,et al.  Overall connectivity--a next generation molecular connectivity. , 2001, Journal of molecular graphics & modelling.

[19]  Roberto Todeschini,et al.  Handbook of Molecular Descriptors , 2002 .

[20]  Nenad Trinajstic,et al.  Toward Generating Simpler QSAR Models: Nonlinear Multivariate Regression versus Several Neural Network Ensembles and Some Related Methods , 2003, J. Chem. Inf. Comput. Sci..

[21]  Douglas M. Hawkins,et al.  The Problem of Overfitting , 2004, J. Chem. Inf. Model..

[22]  Adalbert Kerber,et al.  MOLGEN-CID - A Canonizer for Molecules and Graphs Accessible through the Internet , 2004, J. Chem. Inf. Model..

[23]  Tomas Öberg,et al.  Boiling Points of Halogenated Aliphatic Compounds: A Quantitative Structure-Property Relationship for Prediction and Validation , 2004, J. Chem. Inf. Model..