Thermal Properties of Ionic Liquids and IoNanofluids of Imidazolium and Pyrrolidinium Liquids

Complex systems based on nanomaterials and common solvents have been shown to have thermophysical properties that can revolutionize current utilization of heat transfer fluids and heat storage cycles. This has been made possible by the existence of thermal conductivity enhancements derived from the presence of additional mechanisms of heat transfer in comparison with the base solvent. Ionic liquids have been shown to have thermophysical properties that justify the replacement of several of the chemical processes now under exploitation, and some of the solvents used, because they can in certain conditions, be considered as green solvents. Dissolving (or mixing as a thermally stable suspension) nanoparticles in ionic liquids, forms “bucky gels”, or IoNanoFluids, which we have recently shown to have thermal conductivity enhancements ranging from (5 to 35) %. This paper reports data on the thermal conductivity of the ionic liquids 1-hexyl-3-methylimidazolium tetrafluoroborate (CAS Number, 244193-50-8), [C6mim...