Quantum Moment Hydrodynamics and the Entropy Principle

This paper presents how a non-commutative version of the entropy extremalization principle allows to construct new quantum hydrodynamic models. Our starting point is the moment method, which consists in integrating the quantum Liouville equation with respect to momentum p against a given vector of monomials of p. Like in the classical case, the so-obtained moment system is not closed. Inspired from Levermore's procedure in the classical case,(26) we propose to close the moment system by a quantum (Wigner) distribution function which minimizes the entropy subject to the constraint that its moments are given. In contrast to the classical case, the quantum entropy is defined globally (and not locally) as the trace of an operator. Therefore, the relation between the moments and the Lagrange multipliers of the constrained entropy minimization problem becomes nonlocal and the resulting moment system involves nonlocal operators (instead of purely local ones in the classical case). In the present paper, we discuss some practical aspects and consequences of this nonlocal feature.

[1]  C J Isham,et al.  Methods of Modern Mathematical Physics, Vol 1: Functional Analysis , 1972 .

[2]  I. Müller,et al.  Rational Extended Thermodynamics , 1993 .

[3]  Ansgar Jüngel,et al.  The quantum hydrodynamic model for semiconductors in thermal equilibrium , 1997 .

[4]  Bernard Helffer,et al.  Equation de Schrödinger avec champ magnétique et équation de Harper , 1989 .

[5]  H. Grubin,et al.  Modeling of Quantum Transport in Semiconductor Devices , 1994 .

[6]  P. Markowich,et al.  Quantum hydrodynamics, Wigner transforms, the classical limit , 1997 .

[7]  Pierre Degond,et al.  Binary quantum collision operators conserving mass momentum and energy , 2003 .

[8]  P. Argyres Quantum kinetic equations for electrons in high electric and phonon fields , 1992 .

[9]  Michael Junk,et al.  Domain of Definition of Levermore's Five-Moment System , 1998 .

[10]  Gardner,et al.  Smooth quantum potential for the hydrodynamic model. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  C. D. Levermore,et al.  Moment closure hierarchies for kinetic theories , 1996 .

[12]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[13]  F. Nier A variational formulation of schrödinger-poisson systems in dimension d ≤ 3 , 1993 .

[14]  H. Grad On the kinetic theory of rarefied gases , 1949 .

[15]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[16]  Christian A. Ringhofer,et al.  A Wignerfunction Approach to Phonon Scattering , 1999, VLSI Design.

[17]  A. Leggett,et al.  Path integral approach to quantum Brownian motion , 1983 .

[18]  B. Perthame,et al.  The Gaussian-BGK model of Boltzmann equation with small Prandtl number , 2000 .

[19]  Ingenuin Gasser,et al.  Closure conditions for classical and quantum moment hierarchies in the small-temperature limit , 1996 .

[20]  Carl L. Gardner,et al.  The Quantum Hydrodynamic Model for Semiconductor Devices , 1994, SIAM J. Appl. Math..

[21]  Christian A. Ringhofer,et al.  The Chapman-Enskog Expansion and the Quantum Hydrodynamic Model for Semiconductor Devices , 2000, VLSI Design.

[22]  Pierre Degond,et al.  A Note on quantum moment hydrodynamics and the entropy principle , 2002 .

[23]  J. Schneider,et al.  Entropic approximation in kinetic theory , 2004 .

[24]  J. M. Ball SHOCK WAVES AND REACTION‐DIFFUSION EQUATIONS (Grundlehren der mathematischen Wissenschaften, 258) , 1984 .

[25]  Michael Junk,et al.  MAXIMUM ENTROPY FOR REDUCED MOMENT PROBLEMS , 2000 .

[26]  M. Shubin Pseudodifferential Operators and Spectral Theory , 1987 .

[27]  Morozov,et al.  Zubarev's method of a nonequilibrium statistical operator and some challenges in the theory of irreversible processes , 1998 .

[28]  Juan Soler,et al.  An Analysis of Quantum Fokker-Planck Models: A Wigner Function Approach , 2004 .

[29]  Ansgar Jüngel,et al.  A Discretization Scheme for a Quasi-Hydrodynamic Semiconductor Model , 1997 .

[30]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[31]  P. Degond,et al.  Mathematical Modelling of Microelectronics Semiconductor Devices Acknowledgments: This Work Originates from Lecture Notes of Courses , 2022 .

[32]  R. Balian From microphysics to macrophysics , 1991 .

[33]  H. L. Grubin,et al.  Quantum moment balance equations and resonant tunnelling structures , 1989 .

[34]  Shi Jin,et al.  Multi-phase computations of the semiclassical limit of the Schrödinger equation and related problems: Whitham vs Wigner , 2003 .

[35]  G. Vojta,et al.  Statistical Mechanics of Nonequilibrium Processes , 1998 .