On the structure of maximal (A, B) -Invariant subspaces: A polynomial matrix approach

Given a controllable and observable triple ( A, B, C ) describing a linear time invariant multivariable system Σ, which gives rise to a full rank transfer function matrix T_{o}(s) , the structure of the maximal ( A, B )- invariant subspace contained in \ker C is investigated using a polynomial matrix approach. Thus, certain connections between the geometric and the polynomial matrix approaches to linear system theory are established.

[1]  On calculating maximal (A,B) invariant subspaces , 1975 .

[2]  A. Morse,et al.  Status of noninteracting control , 1971 .

[3]  William A. Wolovich,et al.  On the Structure of Multivariable Systems , 1969 .

[4]  H. Rosenbrock The zeros of a system , 1973 .

[5]  W. Wolovich The determination of state-space representations for linear multivariable systems , 1973 .

[6]  A. Morse,et al.  Decoupling and Pole Assignment in Linear Multivariable Systems: A Geometric Approach , 1970 .

[7]  An algorithm for decoupling and maximal pole assignment in multivariable systems by the use of state feedback , 1979 .

[8]  H. Rosenbrock Correspondence : Correction to ‘The zeros of a system’ , 1974 .

[9]  Michael K. Sain,et al.  A Free-Modular Algorithm for Minimal Design of Linear Multivariable Systems , 1975 .

[10]  The mechanism of decoupling , 1979 .

[11]  D. Luenberger Canonical forms for linear multivariable systems , 1967, IEEE Transactions on Automatic Control.

[12]  Jr. G. Forney,et al.  Minimal Bases of Rational Vector Spaces, with Applications to Multivariable Linear Systems , 1975 .

[13]  W. Wolovich 0n the numerators and zeros and rational transfer matrices , 1973 .

[14]  A. Vardulakis,et al.  On certain connections between the geometric and the polynomial matrix approaches to linear system theory , 1979 .

[15]  A. E. Eckberg,et al.  On the Dimensions of Controllability Subspaces: A Characterization via Polynomial Matrices and Kronecker Invariants , 1975 .

[16]  A. Vardulakis On the structure of the bases of all possible controllability subspaces of a controllable pair [ A, B] in canonical form , 1978 .

[17]  A. Laub,et al.  Computation of supremal (A,B)-invariant and controllability subspaces , 1977 .