The Origin and Evolution of Saturn, with Exoplanet Perspective

Saturn formed beyond the snow line in the primordial solar nebula that made it possible for it to accrete a large mass. Disk instability and core accretion models have been proposed for Saturn's formation, but core accretion is favored on the basis of its volatile abundances, internal structure, hydrodynamic models, chemical characteristics of protoplanetary disk, etc. The observed frequency, properties and models of exoplanets provide additional supporting evidence for core accretion. The heavy elements with mass greater than 4He make up the core of Saturn, but are presently poorly constrained, except for carbon. The C/H ratio is super-solar, and twice that in Jupiter. The enrichment of carbon and other heavy elements in Saturn and Jupiter requires special delivery mechanisms for volatiles to these planets. In this chapter we will review our current understanding of the origin and evolution of Saturn and its atmosphere, using a multi-faceted approach that combines diverse sets of observations on volatile composition and abundances, relevant properties of the moons and rings, comparison with the other gas giant planet, Jupiter, analogies to the extrasolar giant planets, as well as pertinent theoretical models.

[1]  Howard Isaacson,et al.  A CORRELATION BETWEEN STELLAR ACTIVITY AND HOT JUPITER EMISSION SPECTRA , 2010, 1004.2702.

[2]  Timothy D. Brandt,et al.  DIRECT IMAGING DETECTION OF METHANE IN THE ATMOSPHERE OF GJ 504 b , 2013, 1310.4183.

[3]  Simon Albrecht,et al.  The signature of orbital motion from the dayside of the planet τ Boötis b , 2012, Nature.

[4]  E. Dartois,et al.  Structure of the DM Tau Outer Disk: Probing the vertical kinetic temperature gradient , 2003 .

[5]  Sushil K. Atreya,et al.  Book-Review - Atmospheres and Ionospheres of the Outer Planets and Their Satellites , 1986 .

[6]  R. Wieler,et al.  Argon, krypton, and xenon in the bulk solar wind as collected by the Genesis mission , 2011 .

[7]  Ronald G. Prinn,et al.  COMPOSITION OF THE VENUS ATMOSPHERE , 2022, Venus.

[8]  Reversing type II migration: resonance trapping of a lighter giant protoplanet , 2000, astro-ph/0003421.

[9]  E. Ramirez-Ruiz,et al.  IDENTIFICATION OF A JET-DRIVEN SUPERNOVA REMNANT IN THE SMALL MAGELLANIC CLOUD: POSSIBLE EVIDENCE FOR THE ENHANCEMENT OF BIPOLAR EXPLOSIONS AT LOW METALLICITY , 2013, 1310.4498.

[10]  C. McKay,et al.  High-temperature shock formation of N2 and organics on primordial Titan , 1988, Nature.

[11]  A. Johansen,et al.  Protoplanetary Disk Turbulence Driven by the Streaming Instability: Non-Linear Saturation and Particle Concentration , 2007, astro-ph/0702626.

[12]  Michael H. Wong,et al.  Composition and origin of the atmosphere of Jupiter—an update, and implications for the extrasolar giant planets , 2003 .

[13]  Andrew N. Youdin,et al.  THE MECHANICAL GREENHOUSE: BURIAL OF HEAT BY TURBULENCE IN HOT JUPITER ATMOSPHERES , 2010, 1008.0645.

[14]  P. Armitage Astrophysics of Planet Formation , 2010 .

[15]  D. Lin,et al.  On the tidal interaction between protoplanets and the primordial solar nebula. I - Linear calculation of the role of angular momentum exchange , 1984 .

[16]  T. Guillot,et al.  The Interior of Jupiter , 2004 .

[17]  S. Weidenschilling Evolution of Grains in a Turbulent Solar Nebula: a Reappraisal , 1984 .

[18]  Adam Burrows,et al.  Theoretical Spectra and Atmospheres of Extrasolar Giant Planets , 2003 .

[19]  Tae-Soo Pyo,et al.  A COMBINED SUBARU/VLT/MMT 1–5 μm STUDY OF PLANETS ORBITING HR 8799: IMPLICATIONS FOR ATMOSPHERIC PROPERTIES, MASSES, AND FORMATION , 2011, 1101.1973.

[20]  Eric B. Ford,et al.  Dynamical Instabilities and the Formation of Extrasolar Planetary Systems , 1996, Science.

[21]  P. Eberhardt A neon-E-rich phase in the Orgueil carbonaceous chondrite , 1974 .

[22]  A. Crida,et al.  The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk , 2007, 0704.1210.

[23]  B. Jiang,et al.  THE MID-INFRARED EXTINCTION LAW IN THE LARGE MAGELLANIC CLOUD , 2013, 1308.1474.

[24]  B. Conrath,et al.  THERMAL STRUCTURE AND HEAT BALANCE OF THE OUTER PLANETS , 1989, Origin and Evolution of Planetary and Satellite Atmospheres.

[25]  B. Fegley,et al.  Chemical Constraints on the Water and Total Oxygen Abundances in the Deep Atmosphere of Saturn , 2004, astro-ph/0501128.

[26]  S. Okuzumi,et al.  ON THE VIABILITY OF THE MAGNETOROTATIONAL INSTABILITY IN CIRCUMPLANETARY DISKS , 2014, 1402.6091.

[27]  Willy Benz,et al.  Extrasolar planet population synthesis I: Method, formation tracks and mass-distance distribution , 2009, 0904.2524.

[28]  Formation of Regular Satellites from Ancient Massive Rings in the Solar System , 2012, Science.

[29]  K. Flaherty,et al.  An Electronic Publication Dedicated to Early Stellar Evolution and Molecular Clouds Abstracts of Recently Accepted Papers V1647 Orionis: One Year into Quiescence Structure and Evolution of Super-earth to Super-jupiter Exoplanets: I. Heavy Element Enrichment in the Interior , 2022 .

[30]  E. Jehin,et al.  TOWARD A UNIQUE NITROGEN ISOTOPIC RATIO IN COMETARY ICES , 2013 .

[31]  S. Charnoz,et al.  The recent formation of Saturn's moonlets from viscous spreading of the main rings , 2010, Nature.

[32]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[33]  H. Mizuno,et al.  Formation of the Giant Planets , 1980 .

[34]  Edwin A. Bergin,et al.  THE EFFECTS OF SNOWLINES ON C/O IN PLANETARY ATMOSPHERES , 2011, 1110.5567.

[35]  B. Militzer,et al.  SOLUBILITY OF WATER ICE IN METALLIC HYDROGEN: CONSEQUENCES FOR CORE EROSION IN GAS GIANT PLANETS , 2012 .

[36]  C. Hayashi Structure of the Solar Nebula, Growth and Decay of Magnetic Fields and Effects of Magnetic and Turbulent Viscosities on the Nebula , 1981 .

[37]  Daniel Gautier,et al.  Composition of Titan's lower atmosphere and simple surface volatiles as measured by the Cassini‐Huygens probe gas chromatograph mass spectrometer experiment , 2010 .

[38]  Patrick Gaulme,et al.  Detection of Jovian seismic waves: a new probe of its interior structure , 2011, 1106.3714.

[39]  Yann Alibert,et al.  Formation of Titan in Saturn's subnebula : constraints from Huygens probe measurements , 2007 .

[40]  D. Gautier,et al.  The helium abundance of Saturn from Voyager measurements , 1984 .

[41]  I. Baraffe,et al.  Structure and evolution of super-Earth to super-Jupiter exoplanets - I. Heavy element enrichment in the interior , 2008, 0802.1810.

[42]  Nikku Madhusudhan,et al.  CARBON-RICH GIANT PLANETS: ATMOSPHERIC CHEMISTRY, THERMAL INVERSIONS, SPECTRA, AND FORMATION CONDITIONS , 2011, 1109.3183.

[43]  G. Orton,et al.  Phosphine on Jupiter and Saturn from Cassini/CIRS , 2009 .

[44]  E. Jehin,et al.  Anomalous Nitrogen Isotope Ratio in Comets , 2003, Science.

[45]  Alessandro Morbidelli,et al.  A low mass for Mars from Jupiter’s early gas-driven migration , 2011, Nature.

[46]  Richard S. Freedman,et al.  A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres , 2007, 0710.2558.

[47]  S. Lubow,et al.  Three-dimensional calculations of high- and low-mass planets embedded in protoplanetary discs , 2003, astro-ph/0301154.

[48]  W. Benz,et al.  Saturn's internal structure and carbon enrichment , 2005, astro-ph/0511392.

[49]  R. West,et al.  Detection of visible lightning on Saturn , 2010 .

[50]  M. Cushing,et al.  MASSES, RADII, AND CLOUD PROPERTIES OF THE HR 8799 PLANETS , 2012, 1205.6488.

[51]  U. Gorti,et al.  Photoevaporation of Circumstellar Disks Due to External Far-Ultraviolet Radiation in Stellar Aggregates , 2004, astro-ph/0404383.

[52]  A. Boss,et al.  Possible Rapid Gas Giant Planet Formation in the Solar Nebula and Other Protoplanetary Disks , 2000, The Astrophysical journal.

[53]  N. Gibson,et al.  Hubble Space Telescope transmission spectroscopy of the exoplanet HD 189733b: high‐altitude atmospheric haze in the optical and near‐ultraviolet with STIS , 2011, 1103.0026.

[54]  Francesca Ferri,et al.  Titan's methane cycle , 2006 .

[55]  L. Sromovsky,et al.  Methane on Uranus: The case for a compact CH4 cloud layer at low latitudes and a severe CH4 depletion at high-latitudes based on re-analysis of Voyager occultation measurements and STIS spectroscopy , 2011, 1503.02476.

[56]  G. Orton,et al.  The origin of nitrogen on Jupiter and Saturn from the 15N/14N ratio , 2014, 1405.3800.

[57]  J.-P. Zahn,et al.  Anelastic Tidal Dissipation in Multi-Layer Planets , 2012, Proceedings of the International Astronomical Union.

[58]  M. Mayor,et al.  An extended upper atmosphere around the extrasolar planet HD209458b , 2003, Nature.

[59]  Andrew Steele,et al.  Mars methane detection and variability at Gale crater , 2015, Science.

[60]  T. Matsui,et al.  OXIDIZING PROTO-ATMOSPHERE ON TITAN: CONSTRAINT FROM N2 FORMATION BY IMPACT SHOCK , 2011 .

[61]  M. McElroy,et al.  Composition and Structure of the Venus Atmosphere: Results from Pioneer Venus , 1979, Science.

[62]  J. Pollack,et al.  PRESENT STATE AND CHEMICAL EVOLUTION OF THE ATMOSPHERES OF TITAN, TRITON AND PLUTO , 1989, Origin and Evolution of Planetary and Satellite Atmospheres.

[63]  J. Szulágyi,et al.  Meridional circulation of gas into gaps opened by giant planets in three-dimensional low-viscosity disks , 2014, 1401.2925.

[64]  T. Encrenaz,et al.  ISO-SWS Observations of Jupiter: Measurement of the Ammonia Tropospheric Profile and of the 15N/14N Isotopic Ratio , 1999, astro-ph/9911257.

[65]  H. Palme,et al.  Solar System Abundances of the Elements , 2003 .

[66]  D. Lin,et al.  TOWARD A DETERMINISTIC MODEL OF PLANETARY FORMATION. VII. ECCENTRICITY DISTRIBUTION OF GAS GIANTS , 2013, 1307.6450.

[67]  David Lafreniere,et al.  NEAR-INFRARED THERMAL EMISSION FROM WASP-12b: DETECTIONS OF THE SECONDARY ECLIPSE IN Ks, H, AND J , 2010, 1009.0071.

[68]  P. Cassen,et al.  Thermal Processing of Interstellar Dust Grains in the Primitive Solar Environment , 1997 .

[69]  S. Paardekooper,et al.  ORBITAL MIGRATION OF LOW-MASS PLANETS IN EVOLUTIONARY RADIATIVE MODELS: AVOIDING CATASTROPHIC INFALL , 2010, 1003.0925.

[70]  P. D. P. Taylor,et al.  Isotopic Compositions of the Elements 1997 , 1998 .

[71]  Andrew Steele,et al.  Isotope Ratios of H, C, and O in CO2 and H2O of the Martian Atmosphere , 2013, Science.

[72]  D. Lin,et al.  On the tidal interaction between protoplanets and the protoplanetary disk. III. Orbital migration of protoplanets , 1986 .

[73]  J. Geiss,et al.  Cosmic and Solar System Abundances of Deuterium and Helium-3 , 1972 .

[74]  D. Hunten,et al.  The composition of the Jovian atmosphere as determined by the Galileo probe mass spectrometer. , 1998, Journal of geophysical research.

[75]  R. Lorenz,et al.  Volatile Origin and Cycles: Nitrogen and Methane , 2009 .

[76]  R. Prinn,et al.  Equilibrium and nonequilibrium chemistry of Saturn's atmosphere - Implications for the observability of PH3, N2, CO, and GeH4 , 1985 .

[77]  M. Asplund,et al.  The Solar Chemical Composition , 2007 .

[78]  B. Dubrulle,et al.  The Dust Subdisk in the Protoplanetary Nebula , 1995 .

[79]  John H. Jones,et al.  The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars , 2015, Science.

[80]  Alexander G. G. M. Tielens,et al.  Interstellar Ice: The Infrared Space Observatory Legacy , 2004 .

[81]  J. Lunine,et al.  A Primordial Origin for the Atmospheric Methane of Saturn’s Moon Titan , 2009, 0908.0430.

[82]  T. Quinn,et al.  Formation of Giant Planets by Fragmentation of Protoplanetary Disks , 2002, Science.

[83]  Andrew P. Ingersoll,et al.  Moist convection in hydrogen atmospheres and the frequency of Saturn's giant storms , 2015 .

[84]  B. Fegley,et al.  Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars: I. Carbon, Nitrogen, and Oxygen , 2002 .

[85]  M. Bate,et al.  Circumplanetary disc properties obtained from radiation hydrodynamical simulations of gas accretion by protoplanets , 2009, 0904.4884.

[86]  Peter Bodenheimer,et al.  On the Tidal Inflation of Short-Period Extrasolar Planets , 2001 .

[87]  E. Neefs,et al.  67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio , 2015, Science.

[88]  S. Seager,et al.  ON THE INFERENCE OF THERMAL INVERSIONS IN HOT JUPITER ATMOSPHERES , 2010, 1010.4585.

[89]  P. J. Schinder,et al.  Temperatures, Winds, and Composition in the Saturnian System , 2005, Science.

[90]  B. Militzer,et al.  Sequestration of noble gases in giant planet interiors. , 2010, Physical review letters.

[91]  Imke de Pater,et al.  A low-temperature origin for the planetesimals that formed Jupiter , 1999, Nature.

[92]  S. Okuzumi,et al.  A FAST AND ACCURATE CALCULATION SCHEME FOR IONIZATION DEGREES IN PROTOPLANETARY AND CIRCUMPLANETARY DISKS WITH CHARGED DUST GRAINS , 2011, 1106.3528.

[93]  K. Glassmeier,et al.  LARGE-AMPLITUDE, CIRCULARLY POLARIZED, COMPRESSIVE, OBLIQUELY PROPAGATING ELECTROMAGNETIC PROTON CYCLOTRON WAVES THROUGHOUT THE EARTH'S MAGNETOSHEATH: LOW PLASMA β CONDITIONS , 2014 .

[94]  G. Orton,et al.  Methane and its isotopologues on Saturn from Cassini/CIRS observations , 2009 .

[95]  T. Iizuka,et al.  U-Pb chronology of the Solar System's oldest solids with variable 238 U/ 235 U , 2010 .

[96]  T. Owen,et al.  Galileo Probe Measurements of D/H and 3He/4He in Jupiter's Atmosphere , 1998 .

[97]  D. Hathaway,et al.  PREDICTING THE SUN'S POLAR MAGNETIC FIELDS WITH A SURFACE FLUX TRANSPORT MODEL , 2013, 1311.0844.

[98]  R. Freedman,et al.  CHEMICAL CONSEQUENCES OF THE C/O RATIO ON HOT JUPITERS: EXAMPLES FROM WASP-12b, CoRoT-2b, XO-1b, AND HD 189733b , 2012, The Astrophysical journal.

[99]  P. Goldreich,et al.  Spectral Energy Distributions of T Tauri Stars with Passive Circumstellar Disks , 1997, astro-ph/9706042.

[100]  S. Charnoz,et al.  Long-term and large-scale viscous evolution of dense planetary rings , 2010, 1006.0633.

[101]  A. Ingersoll,et al.  Saturn’s visible lightning, its radio emissions, and the structure of the 2009–2011 lightning storms , 2013 .

[102]  T. Owen,et al.  Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter , 2004 .

[103]  Tristan Guillot,et al.  INTERIOR MODELS OF SATURN: INCLUDING THE UNCERTAINTIES IN SHAPE AND ROTATION , 2013, 1302.6690.

[104]  J. Lunine,et al.  26Al decay: Heat production and a revised age for Iapetus , 2009 .

[105]  R. J. de Kok,et al.  Detection of water absorption in the day side atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 μm , 2013, 1307.1133.

[106]  R. Canup Origin of Saturn’s rings and inner moons by mass removal from a lost Titan-sized satellite , 2010, Nature.

[107]  Princeton,et al.  Theoretical Transmission Spectra during Extrasolar Giant Planet Transits , 1999, astro-ph/9912241.

[108]  Yann Alibert,et al.  On the Volatile Enrichments and Composition of Jupiter , 2005, astro-ph/0502325.

[109]  E. Bergin,et al.  EXCLUSION OF COSMIC RAYS IN PROTOPLANETARY DISKS: STELLAR AND MAGNETIC EFFECTS , 2013, 1306.0902.

[110]  N. Turner,et al.  MAGNETIC COUPLING IN THE DISKS AROUND YOUNG GAS GIANT PLANETS , 2013, 1306.2276.

[111]  Matthew R. Bate,et al.  Gas accretion on to planetary cores: three-dimensional self-gravitating radiation hydrodynamical calculations , 2008, 0811.1259.

[112]  Nikku Madhusudhan,et al.  C/O RATIO AS A DIMENSION FOR CHARACTERIZING EXOPLANETARY ATMOSPHERES , 2012, 1209.2412.

[113]  Michiel Lambrechts,et al.  Rapid growth of gas-giant cores by pebble accretion , 2012, 1205.3030.

[114]  W. Benz,et al.  From stellar nebula to planetesimals , 2014, 1407.7271.

[115]  John H. Jones,et al.  Primordial argon isotope fractionation in the atmosphere of Mars measured by the SAM instrument on Curiosity and implications for atmospheric loss , 2013, Geophysical research letters.

[116]  Nikku Madhusudhan,et al.  TOWARD CHEMICAL CONSTRAINTS ON HOT JUPITER MIGRATION , 2014, 1408.3668.

[117]  T. Encrenaz,et al.  A comparison of the atmospheres of Jupiter and Saturn: deep atmospheric composition, cloud structure, vertical mixing, and origin. , 1999, Planetary and space science.

[118]  C. Hayashi,et al.  The Gas Drag Effect on the Elliptic Motion of a Solid Body in the Primordial Solar Nebula , 1976 .

[119]  C. Gammie,et al.  Transport and Accretion in Planet-Forming Disks , 2014, 1401.7306.

[120]  Sara Seager,et al.  INFERENCE OF INHOMOGENEOUS CLOUDS IN AN EXOPLANET ATMOSPHERE , 2013, 1309.7894.

[121]  Alain Lecavelier des Etangs,et al.  THE DEEP BLUE COLOR OF HD 189733b: ALBEDO MEASUREMENTS WITH HUBBLE SPACE TELESCOPE/SPACE TELESCOPE IMAGING SPECTROGRAPH AT VISIBLE WAVELENGTHS , 2013, 1307.3239.

[122]  D. Hunten,et al.  The abundances of constituents of Titan's atmosphere from the GCMS instrument on the Huygens probe , 2005, Nature.

[123]  J. Lunine,et al.  Enrichments in Volatiles in Jupiter: A New Interpretation of the Galileo Measurements , 2001 .

[124]  A. Morbidelli,et al.  On the width and shape of gaps in protoplanetary disks , 2006 .

[125]  T. Encrenaz,et al.  The deuterium abundance in Jupiter and Saturn from ISO-SWS observations , 2001 .

[126]  K. Mathew,et al.  Early evolution of Martian volatiles: Nitrogen and noble gas components in ALH84001 and Chassigny , 2001 .

[127]  D. Gautier,et al.  Saturn Helium Abundance: A Reanalysis of Voyager Measurements , 2000 .

[128]  J. Lunine,et al.  CLATHRATION OF VOLATILES IN THE SOLAR NEBULA AND IMPLICATIONS FOR THE ORIGIN OF TITAN'S ATMOSPHERE , 2008, 0810.0308.

[129]  B. Scott Gaudi,et al.  Prospects for the Characterization and Confirmation of Transiting Exoplanets via the Rossiter-McLaughlin Effect , 2006, astro-ph/0608071.

[130]  J. Lunine,et al.  CARBON-RICH PLANET FORMATION IN A SOLAR COMPOSITION DISK , 2014, 1402.5182.

[131]  M. Asplund,et al.  The New Solar Chemical Composition , 2005 .

[132]  T. Guillot,et al.  Calculation of the enrichment of the giant planet envelopes during the “late heavy bombardment” , 2009, 1012.0692.

[133]  M. Asplund,et al.  The chemical composition of the Sun , 2010 .

[134]  J. Greenberg,et al.  Conditions for condensation and preservation of amorphous ice and crystallinity of astrophysical ices , 1994 .

[135]  S. Charnoz,et al.  STRONG TIDAL DISSIPATION IN SATURN AND CONSTRAINTS ON ENCELADUS' THERMAL STATE FROM ASTROMETRY , 2012, 1204.0895.

[136]  R. Cameron,et al.  EFFECTS OF THE SCATTER IN SUNSPOT GROUP TILT ANGLES ON THE LARGE-SCALE MAGNETIC FIELD AT THE SOLAR SURFACE , 2014, 1406.5564.

[137]  K. Lodders Solar System Abundances of the Elements , 2010, 1010.2746.

[138]  K. Ohtsuki,et al.  DISTRIBUTION OF ACCRETING GAS AND ANGULAR MOMENTUM ONTO CIRCUMPLANETARY DISKS , 2011, 1112.3706.

[139]  D. Wilner,et al.  THE IONIZATION FRACTION IN THE DM Tau PROTOPLANETARY DISK , 2011, 1109.2578.

[140]  Adam Burrows,et al.  CAN TiO EXPLAIN THERMAL INVERSIONS IN THE UPPER ATMOSPHERES OF IRRADIATED GIANT PLANETS? , 2009, 0902.3995.

[141]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[142]  A. Bar-Nun,et al.  A ∼25 K temperature of formation for the submicron ice grains which formed comets , 2005 .

[143]  W. C. Bowman,et al.  A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b , 2010, Nature.

[144]  A. Crida,et al.  ACCRETION OF JUPITER-MASS PLANETS IN THE LIMIT OF VANISHING VISCOSITY , 2013, 1312.6302.

[145]  Drake Deming,et al.  EXOPLANET TRANSIT SPECTROSCOPY USING WFC3: WASP-12 b, WASP-17 b, AND WASP-19 b , 2013, 1310.2949.

[146]  A. Burrows,et al.  THERMAL PROCESSES GOVERNING HOT-JUPITER RADII , 2013, 1303.0293.

[147]  C. Baruteau,et al.  A torque formula for non-isothermal Type I planetary migration – II. Effects of diffusion , 2010, 1007.4964.

[148]  A. Johansen,et al.  PARTICLE CLUMPING AND PLANETESIMAL FORMATION DEPEND STRONGLY ON METALLICITY , 2009, 0909.0259.

[149]  Patrick G. J. Irwin,et al.  Optimal estimation retrievals of the atmospheric structure and composition of HD 189733b from secondary eclipse spectroscopy , 2011, 1110.2934.

[150]  A. Morbidelli,et al.  Dynamics of pebbles in the vicinity of a growing planetary embryo: hydro-dynamical simulations , 2012, 1208.4687.

[151]  John Asher Johnson,et al.  Giant Planet Occurrence in the Stellar Mass-Metallicity Plane , 2010, 1005.3084.

[152]  B. Macintosh,et al.  Images of a fourth planet orbiting HR 8799 , 2010, Nature.

[153]  A. Crida,et al.  Spin-orbit angle distribution and the origin of (mis)aligned hot Jupiters , 2014, 1405.0960.

[154]  On Composition , 1992, Syncategoreumata.

[155]  J. Lunine,et al.  PROTOSOLAR AMMONIA AS THE UNIQUE SOURCE OF TITAN's NITROGEN , 2014, The astrophysical journal. Letters.

[156]  K. Ulaczyk,et al.  Unbound or distant planetary mass population detected by gravitational microlensing , 2011, Nature.

[157]  T. Guillot,et al.  New constraints on Saturn’s interior from Cassini astrometric data , 2015, 1510.05870.

[158]  Tristan Guillot,et al.  Astronomy and Astrophysics Evolution of " 51 Peg B-like " Planets , 2001 .

[159]  M. Bate,et al.  The growth and hydrodynamic collapse of a protoplanet envelope , 2012, 1208.5513.

[160]  A. Cameron,et al.  Abundances of the elements in the solar system , 1973 .

[161]  H. Palme 1.03 – Solar System Abundances of the Elements , 2003 .

[162]  JOHN S. Lewis,et al.  Estimated impact shock production of N2 and organic compounds on early Titan , 1987 .

[163]  Sara Seager,et al.  A PRECISE WATER ABUNDANCE MEASUREMENT FOR THE HOT JUPITER WASP-43b , 2014, 1410.2255.

[164]  Nikku Madhusudhan,et al.  NEBULAR WATER DEPLETION AS THE CAUSE OF JUPITER'S LOW OXYGEN ABUNDANCE , 2012, 1204.3887.

[165]  L. Koesterke,et al.  Sodium Absorption from the Exoplanetary Atmosphere of HD 189733b Detected in the Optical Transmission Spectrum , 2007, 0712.0761.

[166]  Paul Hartogh,et al.  Ocean-like water in the Jupiter-family comet 103P/Hartley 2 , 2011, Nature.

[167]  A. Crida,et al.  Cavity opening by a giant planet in a protoplanetary disc and effects on planetary migration , 2007, astro-ph/0703151.

[168]  J. Papaloizou,et al.  Planet-Disc Interactions and Early Evolution of Planetary Systems , 2013, 1312.4293.

[169]  G. Mellema,et al.  Halting type I planet migration in non-isothermal disks , 2006, astro-ph/0608658.

[170]  J. Crovisier Comet Hale-Bopp (C/1995 O1) , 2001 .

[171]  Steven T. Massie,et al.  Models of the millimeter-centimeter spectra of the giant planets , 1985 .

[172]  W. Kley,et al.  Migration of massive planets in accreting disks , 2014, 1411.3190.

[173]  D. Hamilton,et al.  SECULAR ORBITAL EVOLUTION OF COMPACT PLANET SYSTEMS , 2013, 1302.1620.

[174]  N. Evans,et al.  THE SPITZER ICE LEGACY: ICE EVOLUTION FROM CORES TO PROTOSTARS , 2011, 1107.5825.

[175]  Jeffrey S. Oishi,et al.  Rapid planetesimal formation in turbulent circumstellar disks , 2007, Nature.

[176]  G. Orton,et al.  Saturn's tropospheric composition and clouds from Cassini/VIMS 4.6-5.1μm nightside spectroscopy , 2011 .

[177]  A. Crida,et al.  Circum-planetary discs as bottlenecks for gas accretion onto giant planets , 2012, 1211.1820.

[178]  T. Owen,et al.  Measurements of 12C/13C, 14N/15N, and 32S/34S ratios in comet Hale-Bopp (C/1995 O1). , 1997, Science.

[179]  R. Redmer,et al.  Saturn layered structure and homogeneous evolution models with different EOSs , 2013, 1304.4707.

[180]  Jpl,et al.  Saturn Forms by Core Accretion in 3.4 Myr , 2008, 0810.0288.

[181]  Andrew N. Youdin,et al.  Streaming Instabilities in Protoplanetary Disks , 2004, astro-ph/0409263.

[182]  J. Lunine,et al.  Interpretation of the carbon abundance in Saturn measured by Cassini , 2008 .

[183]  A. Crida,et al.  Stellar irradiated discs and implications on migration of embedded planets - II. Accreting-discs , 2014, 1401.1334.

[184]  I. Hubeny,et al.  A Possible Bifurcation in Atmospheres of Strongly Irradiated Stars and Planets , 2003 .

[185]  J. Prochaska,et al.  Large Excess of Heavy Nitrogen in Both Hydrogen Cyanide and Cyanogen from Comet 17P/Holmes , 2008, 0804.1192.

[186]  M. Tomasko,et al.  The haze and methane distributions on Uranus from HST-STIS spectroscopy , 2009 .

[187]  Bruce A. Macintosh,et al.  Detection of Carbon Monoxide and Water Absorption Lines in an Exoplanet Atmosphere , 2013, Science.

[188]  C. Sotin,et al.  Planetary internal structures , 2014, 1401.4738.

[189]  I. Kamp,et al.  Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets , 2014, Life.

[190]  W. Ward Protoplanet Migration by Nebula Tides , 1997 .

[191]  Andrew Steele,et al.  Isotopes of nitrogen on Mars: Atmospheric measurements by Curiosity's mass spectrometer , 2013, Geophysical research letters.

[192]  A. Johansen,et al.  Separating gas-giant and ice-giant planets by halting pebble accretion , 2014, 1408.6087.

[193]  Katharina Lodders,et al.  Jupiter Formed with More Tar than Ice , 2004 .

[194]  Daniel Gautier,et al.  An Evolutionary Turbulent Model of Saturn's Subnebula: Implications for the Origin of the Atmosphere of Titan , 2002 .

[195]  S. Atreya,et al.  Coupled Clouds and Chemistry of the Giant Planets— A Case for Multiprobes , 2005 .

[196]  R. Prinn,et al.  Kinetic inhibition of CO and N2 reduction in circumplanetary nebulae - Implications for satellite composition , 1981 .

[197]  Jason J. Wang,et al.  Discovery and spectroscopy of the young jovian planet 51 Eri b with the Gemini Planet Imager , 2015, Science.

[198]  Sean Raymond,et al.  Convergence zones for Type I migration: an inward shift for multiple planet systems , 2013, 1302.2627.

[199]  T. Encrenaz,et al.  Compositional constraints on giant planet formation , 2006 .

[200]  Joanna K. Barstow,et al.  CLOUDS ON THE HOT JUPITER HD189733b: CONSTRAINTS FROM THE REFLECTION SPECTRUM , 2014, 1403.6664.

[201]  Andrew W. Howard,et al.  Observed Properties of Extrasolar Planets , 2013, Science.

[202]  C. Baruteau,et al.  A torque formula for non-isothermal type I planetary migration – I. Unsaturated horseshoe drag , 2009, 0909.4552.

[203]  Michel Mayor,et al.  The Broadband Infrared Emission Spectrum of the Exoplanet HD 189733b , 2008, 0802.0845.

[204]  N. Crouzet,et al.  WATER VAPOR IN THE SPECTRUM OF THE EXTRASOLAR PLANET HD 189733b. I. THE TRANSIT , 2014, 1407.2462.

[205]  A. Cameron Elemental and Nuclidic Abundances in the Solar System , 1982 .

[206]  Ben Hipwell Upcoming Meetings , 2011, Journal of Herpetological Medicine and Surgery.

[207]  Konstantin Batygin,et al.  INFLATING HOT JUPITERS WITH OHMIC DISSIPATION , 2010, 1002.3650.

[208]  Nicolas Grevesse,et al.  The Solar Chemical Composition , 2005 .

[209]  Mark Clampin,et al.  INFRARED TRANSMISSION SPECTROSCOPY OF THE EXOPLANETS HD 209458b AND XO-1b USING THE WIDE FIELD CAMERA-3 ON THE HUBBLE SPACE TELESCOPE , 2013, 1302.1141.

[210]  C. Dullemond,et al.  TIME EVOLUTION OF VISCOUS CIRCUMSTELLAR DISKS DUE TO PHOTOEVAPORATION BY FAR-ULTRAVIOLET, EXTREME-ULTRAVIOLET, AND X-RAY RADIATION FROM THE CENTRAL STAR , 2009, 0909.1836.

[211]  Drake Deming,et al.  H2O ABUNDANCES IN THE ATMOSPHERES OF THREE HOT JUPITERS , 2014, 1407.6054.

[212]  Yann Alibert,et al.  New Jupiter and Saturn Formation Models Meet Observations , 2005, astro-ph/0504598.

[213]  R. Wiens,et al.  A 15N-Poor Isotopic Composition for the Solar System As Shown by Genesis Solar Wind Samples , 2011, Science.

[214]  K. Menou THERMO-RESISTIVE INSTABILITY OF HOT PLANETARY ATMOSPHERES , 2012, 1206.3363.

[215]  T. Owen,et al.  Jupiter’s interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft , 2017, Science.

[216]  S. Tremaine,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 SHRINKING BINARY AND PLANETARY ORBITS BY KOZAI CYCLES WITH TIDAL FRICTION , 2022 .

[217]  A. Ingersoll,et al.  Analysis of Saturn’s thermal emission at 2.2-cm wavelength: Spatial distribution of ammonia vapor , 2013 .

[218]  N. Santos,et al.  CHEMICAL CLUES ON THE FORMATION OF PLANETARY SYSTEMS: C/O VERSUS Mg/Si FOR HARPS GTO SAMPLE , 2010, Proceedings of the International Astronomical Union.

[219]  D. Black On the origins of trapped helium, neon and argon isotopic variations in meteorites. I - Gas-rich meteorites, lunar soil and breccia. II - Carbonaceous meteorites. , 1972 .

[220]  Yann Alibert,et al.  DETERMINATION OF THE MINIMUM MASSES OF HEAVY ELEMENTS IN THE ENVELOPES OF JUPITER AND SATURN , 2008, 0812.2441.

[221]  D. Black On the origins of trapped helium, neon and argon isotopic variations in meteorites—II. Carbonaceous meteorites , 1972 .

[222]  S. Atreya,et al.  Fresh clouds: A parameterized updraft method for calculating cloud densities in one-dimensional models , 2015 .

[223]  C. Webster Atmosphere Isotope Ratios of H, C, and O in CO2 and H2O of the Martian , 2013 .

[224]  S. Aigrain,et al.  The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations , 2012, 1210.4163.

[225]  J. Pollack,et al.  The effect of dense cores on the structure and evolution of Jupiter and Saturn , 1980 .

[226]  Ravit Helled,et al.  Measuring Jupiter's water abundance by Juno: the link between interior and formation models , 2014, 1403.2891.

[227]  S. Atreya,et al.  Evolution of a Nitrogen Atmosphere on Titan , 1978, Science.

[228]  J. Geiss,et al.  Abundances of Deuterium and Helium-3 in the Protosolar Cloud , 1998 .

[229]  Benjamin Levrard,et al.  Is tidal heating sufficient to explain bloated exoplanets? Consistent calculations accounting for finite initial eccentricity , 2010, 1004.0463.

[230]  K. Nakazawa,et al.  Formation of Giant Planets in Dense Nebulae: Critical Core Mass Revisited , 2001 .

[231]  W. Folkner,et al.  Ammonia abundance in Jupiter's atmosphere derived from the attenuation of the Galileo probe's radio signal , 1998 .

[232]  H. Gail,et al.  Abundances of the elements in the solar system , 2009, 0901.1149.

[233]  T. Owen,et al.  The composition of Titan’s lower atmosphere and simple surface volatiles as measured by the Cassini-Huygens probe , 2010 .

[234]  Paul R. Mahaffy,et al.  Noble gas abundance and isotope ratios in the atmosphere of Jupiter from the Galileo Probe Mass Spectrometer , 2000 .

[235]  Simon Albrecht,et al.  The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b , 2010, Nature.

[236]  William R. Ward,et al.  Formation of the Galilean Satellites: Conditions of Accretion , 2002 .

[237]  E. Kokubo,et al.  Angular Momentum Accretion onto a Gas Giant Planet , 2008, 0801.3305.

[238]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[239]  Seiji Sugita,et al.  The role of Fischer–Tropsch catalysis in the origin of methane-rich Titan , 2005 .

[240]  F. Briggs,et al.  Radio observations of Saturn as a probe of its atmosphere and cloud structure , 1989 .

[241]  F. Masset,et al.  Reversing type II migration: resonance trapping of a lighter giant protoplanet , 2000, astro-ph/0101332.

[242]  John Asher Johnson,et al.  HOT STARS WITH HOT JUPITERS HAVE HIGH OBLIQUITIES , 2010, 1006.4161.

[243]  I. Hubeny,et al.  Possible Solutions to the Radius Anomalies of Transiting Giant Planets , 2006 .

[244]  A. Cameron The interaction between giant gaseous protoplanets and the primitive solar nebula , 1979 .

[245]  Ignasi Ribas,et al.  A correlation between the heavy element content of transiting extrasolar planets and the metallicity of their parent stars , 2006, astro-ph/0605751.

[246]  A. Crida,et al.  Stellar irradiated discs and implications on migration of embedded planets. I. Equilibrium discs , 2012, 1211.6345.

[247]  Bruce Fegley,et al.  Solar nebula chemistry: origins of planetary, satellite and cometary volatiles , 1989 .

[248]  D. Hunten,et al.  Helium in Jupiter's atmosphere: Results from the Galileo probe Helium Interferometer Experiment , 1998 .

[249]  P. Bodenheimer,et al.  Orbital migration of the planetary companion of 51 Pegasi to its present location , 1996, Nature.

[250]  Ricardo Hueso,et al.  The composition of Jupiter: sign of a (relatively) late formation in a chemically evolved protosolar disc , 2006 .

[251]  D. Deming,et al.  SPECTROSCOPIC EVIDENCE FOR A TEMPERATURE INVERSION IN THE DAYSIDE ATMOSPHERE OF HOT JUPITER WASP-33b , 2015, 1505.01490.

[252]  Sara Seager,et al.  Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy , 2014, Science.

[253]  S. Charnoz,et al.  Accretion of Saturn's mid-sized moons during the viscous spreading of young massive rings: Solving the paradox of silicate-poor rings versus silicate-rich moons , 2011, 1109.3360.

[254]  Eiichiro Kokubo,et al.  Oligarchic growth of protoplanets , 1996 .

[255]  K. Tsiganis,et al.  Origin of the orbital architecture of the giant planets of the Solar System , 2005, Nature.

[256]  Leslie Hebb,et al.  Spin-orbit angle measurements for six southern transiting planets: New insights into the dynamical origins of hot Jupiters , 2010, 1008.2353.