On the Accuracy of Poisson's Formula Based N-Body Algorithms
暂无分享,去创建一个
[1] A. D. McLaren,et al. Optimal numerical integration on a sphere , 1963 .
[2] L Greengard,et al. On the Efficient Implementation of the Fast Multipole Algorithm. , 1988 .
[3] Christopher R. Anderson,et al. An Implementation of the Fast Multipole Method without Multipoles , 1992, SIAM J. Sci. Comput..
[4] Michael S. Warren,et al. A portable parallel particle program , 1995 .
[5] V. Rokhlin,et al. Rapid Evaluation of Potential Fields in Three Dimensions , 1988 .
[6] Yu Hu,et al. Implementing O(N) N-Body Algorithms Efficiently in Data-Parallel Languages , 1996, Sci. Program..
[7] K. Esselink. A comparison of algorithms for long-range interactions , 1995 .
[8] J. CARRIERt,et al. A FAST ADAPTIVE MULTIPOLE ALGORITHM FOR PARTICLE SIMULATIONS * , 2022 .
[9] William Gropp,et al. A Parallel Version of the Fast Multipole Method-Invited Talk , 1987, PPSC.
[10] Piet Hut,et al. A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.
[11] Jacob Katzenelson. Computational structure of the N-body problem , 1989 .
[12] Feng Zhao,et al. The Parallel Multipole Method on the Connection Machine , 1991, SIAM J. Sci. Comput..
[13] Leslie Greengard,et al. A fast algorithm for particle simulations , 1987 .
[14] Yu Hu,et al. A Data-Parallel Implementation of Hierarchical N-Body Methods , 1996, Int. J. High Perform. Comput. Appl..
[15] K. Schmidt,et al. Implementing the fast multipole method in three dimensions , 1991 .
[16] Jiro Shimada,et al. Performance of fast multipole methods for calculating electrostatic interactions in biomacromolecular simulations , 1994, J. Comput. Chem..