Machine learning classifiers for glaucoma diagnosis based on classification of retinal nerve fibre layer thickness parameters measured by Stratus OCT

Purpose:  To compare the performance of two machine learning classifiers (MLCs), artificial neural networks (ANNs) and support vector machines (SVMs), with input based on retinal nerve fibre layer thickness (RNFLT) measurements by optical coherence tomography (OCT), on the diagnosis of glaucoma, and to assess the effects of different input parameters.

[1]  J. Katz,et al.  Sensitivity and specificity of the StratusOCT for perimetric glaucoma. , 2005, Ophthalmology.

[2]  Kouros Nouri-Mahdavi,et al.  Comparison of retinal nerve fiber layer thickness and optic disk algorithms with optical coherence tomography to detect glaucoma. , 2006, American journal of ophthalmology.

[3]  A. Sommer,et al.  An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. , 1992, Ophthalmology.

[4]  张振跃,et al.  Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment , 2004 .

[5]  Martin Fodslette Meiller A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning , 1993 .

[6]  Cedric Ka-Fai Yiu,et al.  Comparative study of retinal nerve fiber layer measurement by StratusOCT and GDx VCC, II: structure/function regression analysis in glaucoma. , 2005, Investigative ophthalmology & visual science.

[7]  Chih-Jen Lin,et al.  Working Set Selection Using Second Order Information for Training Support Vector Machines , 2005, J. Mach. Learn. Res..

[8]  Robert N Weinreb,et al.  Comparing neural networks and linear discriminant functions for glaucoma detection using confocal scanning laser ophthalmoscopy of the optic disc. , 2002, Investigative ophthalmology & visual science.

[9]  Xiaohui Liu,et al.  A spatio-temporal Bayesian network classifier for understanding visual field deterioration , 2005, Artif. Intell. Medicine.

[10]  Parul Sony,et al.  Diagnostic capability of optical coherence tomography in evaluating the degree of glaucomatous retinal nerve fiber damage. , 2006, Investigative ophthalmology & visual science.

[11]  F. Medeiros,et al.  Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. , 2004, Archives of ophthalmology.

[12]  C. Glymour,et al.  Optical coherence tomography machine learning classifiers for glaucoma detection: a preliminary study. , 2005, Investigative ophthalmology & visual science.

[13]  R S Harwerth,et al.  Ganglion cell losses underlying visual field defects from experimental glaucoma. , 1999, Investigative ophthalmology & visual science.

[14]  A. Tuulonen,et al.  Nerve fiber layer defects with normal visual fields. Do normal optic disc and normal visual field indicate absence of glaucomatous abnormality? , 1993, Ophthalmology.

[15]  Martin Fodslette Møller,et al.  A scaled conjugate gradient algorithm for fast supervised learning , 1993, Neural Networks.

[16]  R. Pandey,et al.  Evaluation of optical coherence tomography and heidelberg retinal tomography parameters in detecting early and moderate glaucoma. , 2007, Investigative ophthalmology & visual science.

[17]  I. Song,et al.  Working Set Selection Using Second Order Information for Training Svm, " Complexity-reduced Scheme for Feature Extraction with Linear Discriminant Analysis , 2022 .

[18]  Anders Heijl,et al.  Trained Artificial Neural Network for Glaucoma Diagnosis Using Visual Field Data: A Comparison With Conventional Algorithms , 2007, Journal of glaucoma.

[19]  Anders Heijl,et al.  Glaucoma Detection by Stratus OCT , 2007, Journal of glaucoma.

[20]  C. Bunce,et al.  The ability of the GDx Nerve Fibre Analyser neural network to diagnose glaucoma , 2001, Graefe's Archive for Clinical and Experimental Ophthalmology.

[21]  R. Chang,et al.  New developments in optical coherence tomography for glaucoma , 2008, Current opinion in ophthalmology.

[22]  H. Quigley,et al.  Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. , 2000, Investigative ophthalmology & visual science.

[23]  A. Heijl,et al.  The nerve fibre layer symmetry test: computerized evaluation of human retinal nerve fibre layer thickness as measured by optical coherence tomography. , 2004, Acta ophthalmologica Scandinavica.

[24]  E. DeLong,et al.  Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. , 1988, Biometrics.

[25]  T. Sejnowski,et al.  Unsupervised machine learning with independent component analysis to identify areas of progression in glaucomatous visual fields. , 2005, Investigative ophthalmology & visual science.

[26]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[27]  Robert N Weinreb,et al.  Combining structural and functional testing for detection of glaucoma. , 2006, Ophthalmology.

[28]  Hiroshi Ishikawa,et al.  Comparison of three optical coherence tomography scanning areas for detection of glaucomatous damage. , 2005, American journal of ophthalmology.

[29]  G. Wollstein,et al.  Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using StratusOCT. , 2004, Investigative ophthalmology & visual science.

[30]  T. Sejnowski,et al.  Heidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers. , 2004, Investigative ophthalmology & visual science.

[31]  Terrence J. Sejnowski,et al.  Comparison of machine learning and traditional classifiers in glaucoma diagnosis , 2002, IEEE Transactions on Biomedical Engineering.

[32]  J. Fujimoto,et al.  Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. , 1996, Ophthalmology.

[33]  K. Lebart,et al.  A stochastic optimization approach for parameter tuning of support vector machines , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[34]  R. Knighton,et al.  Reproducibility of retinal nerve fiber thickness measurements using the stratus OCT in normal and glaucomatous eyes. , 2005, Investigative ophthalmology & visual science.

[35]  L Brigatti,et al.  Neural networks to identify glaucoma with structural and functional measurements. , 1996, American journal of ophthalmology.

[36]  A. Sommer,et al.  Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. , 1991, Archives of ophthalmology.

[37]  F. Medeiros,et al.  Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. , 2005, American journal of ophthalmology.

[38]  Robert N Weinreb,et al.  Fourier analysis of optical coherence tomography and scanning laser polarimetry retinal nerve fiber layer measurements in the diagnosis of glaucoma. , 2003, Archives of ophthalmology.

[39]  Robert N Weinreb,et al.  Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry. , 2002, Investigative ophthalmology & visual science.

[40]  T. Sejnowski,et al.  Relevance vector machine and support vector machine classifier analysis of scanning laser polarimetry retinal nerve fiber layer measurements. , 2005, Investigative ophthalmology & visual science.

[41]  Anders Heijl,et al.  Effects of input data on the performance of a neural network in distinguishing normal and glaucomatous visual fields. , 2005, Investigative ophthalmology & visual science.

[42]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[43]  B. Bengtsson,et al.  Modelling the normal retinal nerve fibre layer thickness as measured by Stratus optical coherence tomography , 2006, Graefe's Archive for Clinical and Experimental Ophthalmology.

[44]  Mei-Ling Huang,et al.  Development and comparison of automated classifiers for glaucoma diagnosis using Stratus optical coherence tomography. , 2005, Investigative ophthalmology & visual science.

[45]  Mei-Ling Huang,et al.  Logistic regression analysis for glaucoma diagnosis using Stratus optical coherence tomography , 2004, The Second Asian and Pacific Rim Symposium on Biophotonics, 2004. APBP 2004..

[46]  H. Zha,et al.  Principal manifolds and nonlinear dimensionality reduction via tangent space alignment , 2004, SIAM J. Sci. Comput..