Artificial increasing returns to scale and the problem of sampling from lognormals

We show how increasing returns to scale in urban scaling can artificially emerge, systematically and predictably, without any sorting or positive externalities. We employ a model where individual productivities are independent and identically distributed lognormal random variables across all cities. We use extreme value theory to demonstrate analytically the paradoxical emergence of increasing returns to scale when the variance of log-productivity is larger than twice the log-size of the population size of the smallest city in a cross-sectional regression. Our contributions are to derive an analytical prediction for the artificial scaling exponent arising from this mechanism and to develop a simple statistical test to try to tell whether a given estimate is real or an artifact. Our analytical results are validated analyzing simulations and real microdata of wages across municipalities in Colombia. We show how an artificial scaling exponent emerges in the Colombian data when the sizes of random samples of workers per municipality are 1% or less of their total size.

[1]  Marc Keuschnigg,et al.  Scaling trajectories of cities , 2019, Proceedings of the National Academy of Sciences.

[2]  Peter Hedström,et al.  Urban scaling and the regional divide , 2019, Science Advances.

[3]  E. Lora,et al.  City Size, Distance and Formal Employment Creation , 2016 .

[4]  Martin Andersson,et al.  How Local are Spatial Density Externalities? Neighbourhood Effects in Agglomeration Economies , 2016 .

[5]  Marcelo Walter,et al.  Spatial sorting: An efficient strategy for approximate nearest neighbor searching , 2016, Comput. Graph..

[6]  Ricardo Hausmann,et al.  Explaining the prevalence, scaling and variance of urban phenomena , 2016, Nature Human Behaviour.

[7]  Jorge C. Leitao,et al.  Is this scaling nonlinear? , 2016, Royal Society Open Science.

[8]  F. Martínez Cities’ power laws: the stochastic scaling factor , 2016 .

[9]  K. Behrens,et al.  Agglomeration Theory with Heterogeneous Agents , 2014 .

[10]  P. Combes,et al.  The Empirics of Agglomeration Economies , 2014, SSRN Electronic Journal.

[11]  J. Eeckhout,et al.  Spatial Sorting , 2014, Journal of Political Economy.

[12]  Johan P. Larsson,et al.  The Sources of the Urban Wage Premium by Worker Skills , 2014 .

[13]  E. K. Lenzi,et al.  Empirical analysis on the connection between power-law distributions and allometries for urban indicators , 2014, 1405.0020.

[14]  M. Batty The New Science of Cities , 2013 .

[15]  Haroldo V. Ribeiro,et al.  Engagement in the electoral processes: scaling laws and the role of the political positions , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  E. K. Lenzi,et al.  Distance to the Scaling Law: A Useful Approach for Unveiling Relationships between Crime and Urban Metrics , 2013, PloS one.

[17]  H. V. Ribeiro,et al.  Scaling laws in the dynamics of crime growth rate , 2013, 1302.2476.

[18]  D. Puga,et al.  Learning by Working in Big Cities , 2012 .

[19]  L. Bettencourt,et al.  The Statistics of Urban Scaling and Their Connection to Zipf’s Law , 2012, PloS one.

[20]  S. Picoli,et al.  Scaling laws and universality in the choice of election candidates , 2011, 1109.4360.

[21]  L. Bettencourt,et al.  Urban Scaling and Its Deviations: Revealing the Structure of Wealth, Innovation and Crime across Cities , 2010, PloS one.

[22]  L. Bettencourt,et al.  A unified theory of urban living , 2010, Nature.

[23]  J. Möller,et al.  Interrelations between the urban wage premium and firm-size wage differentials: a microdata cohort analysis for Germany , 2010 .

[24]  Gilles Duranton,et al.  Productive Cities: Sorting, Selection, and Agglomeration , 2010, Journal of Political Economy.

[25]  Didier Sornette,et al.  Theory of Zipf's Law and Beyond , 2009 .

[26]  Daniel J. Graham,et al.  A meta-analysis of estimates of urban agglomeration economies , 2009 .

[27]  P. Combes,et al.  The Productivity Advantages of Large Cities: Distinguishing Agglomeration from Firm Selection , 2009, SSRN Electronic Journal.

[28]  X. Gabaix Power Laws in Economics and Finance , 2008 .

[29]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[30]  D. Helbing,et al.  Growth, innovation, scaling, and the pace of life in cities , 2007, Proceedings of the National Academy of Sciences.

[31]  D. Pumain,et al.  An evolutionary theory for interpreting urban scaling laws Une théorie évolutive pour expliquer les lois d'échelle dans les systèmes de villes , 2006 .

[32]  X. Gabaix,et al.  Why Has CEO Pay Increased so Much? , 2006 .

[33]  Eric R. Ziegel,et al.  Statistical Size Distributions in Economics and Actuarial Sciences , 2004, Technometrics.

[34]  Matissa N. Hollister Does Firm Size Matter Anymore? The New Economy and Firm Size Wage Effects , 2004 .

[35]  A. Venables,et al.  Spatial Determinants of Productivity: Analysis for the Regions of Great Britain , 2004 .

[36]  C. I. Jones,et al.  The Shape of Production Function and the Direction of Technical Change , 2004 .

[37]  P. Combes,et al.  Spatial Wage Disparities: Sorting Matters! , 2004 .

[38]  G. Duranton,et al.  Micro-Foundations of Urban Agglomeration Economies , 2003 .

[39]  J. Corcoran Modelling Extremal Events for Insurance and Finance , 2002 .

[40]  W. Stahel,et al.  Log-normal Distributions across the Sciences: Keys and Clues , 2001 .

[41]  A. Piquero,et al.  USING THE CORRECT STATISTICAL TEST FOR THE EQUALITY OF REGRESSION COEFFICIENTS , 1998 .

[42]  C. Clogg,et al.  Statistical Methods for Comparing Regression Coefficients Between Models , 1995, American Journal of Sociology.

[43]  David C. Maré,et al.  Cities and Skills , 1994, Journal of Labor Economics.

[44]  PAUL EMBRECHTS,et al.  Modelling of extremal events in insurance and finance , 1994, Math. Methods Oper. Res..

[45]  J. Hüsler Extremes and related properties of random sequences and processes , 1984 .

[46]  Sherwin Rosen,et al.  Substitution and Division of Labour , 1978 .

[47]  Leo Sveikauskas The Productivity of Cities , 1975 .

[48]  William Shockley,et al.  On the Statistics of Individual Variations of Productivity in Research Laboratories , 1957, Proceedings of the IRE.

[49]  A. Roy,et al.  The Distribution of Earnings and of Individual Output , 1950 .

[50]  L. Wirth,et al.  Urbanism as a Way of Life , 1938, American Journal of Sociology.

[51]  J. Eeckhout,et al.  Assortative Matching With Large Firms , 2018 .

[52]  K. Behrens,et al.  CHAPTER 4 Agglomeration Theory with Heterogeneous Agents , 2015 .

[53]  L. Bettencourt The Origins of Scaling in Cities , 2012 .

[54]  P. Combes,et al.  The productivity advantages of large cities : Distinguishing agglomeration from firm selection : Supplemental material : Additional appendices , 2012 .

[55]  D. Puga The Magnitude and Causes of Agglomeration Economies , 2010 .

[56]  S. Rosenthal,et al.  Evidence on the nature and sources of agglomeration economies , 2004 .

[57]  Walter Y. Oi,et al.  Firm size and wages , 1999 .

[58]  S. Gould Full House: The Spread of Excellence from Plato to Darwin , 1996 .

[59]  E. Mills,et al.  Handbook of Regional and Urban Economics , 1987 .

[60]  J. Mincer The Distribution of Labor Incomes: A Survey with Special Reference to the Human Capital Approach , 1970 .

[61]  J. Aitchison,et al.  The lognormal distribution : with special reference to its uses in economics , 1957 .

[62]  H. Houthakker,et al.  The Pareto Distribution and the Cobb-Douglas Production Function in Activity Analysis , 1955 .