Rheological Properties of Oil Based Drilling Fluids and Base Oils

Drilling fluids for oil wells must meet a number of requirements, including maintaining formation integrity, lubricating the drill string, and transporting cuttings to the surface. In order to satisfy these needs, drilling fluids have become increasingly complex and expensive. To ensure safe and efficient drilling, it is vital for the drilling operator to be able to make a qualified choice of fluid appropriate for each individual well.API/ISO standards specify a set of tests for characterization of drilling fluids. However, fluids that are tested to have equal properties according to these standards are still observed to perform significantly different when used in the field. The aim of the full project is to provide a thorough comparison of drilling fluids in particular with respect to hole cleaning performance, in light of the issues presented above. As part of this investigation we here present results for two oil based drilling fluids, as well as for the corresponding base oil. The drilling fluids differ in composition by varying fraction of base oil, and thus density and water content.The fluids have been tested according to the API standard, and further, viscoelastic properties have been examined using an Anton Paar rheometer. The rheological test campaign includes determination of the linear viscoelastic range (LVER), viscosity and yield point, thixotropic time test, and temperature dependence of rheological parameters.Further, it is demonstrated how the rheological data may be used to interpret data from ongoing full scale flow loop experiments with the same fluids. In a more general context, the rheological test campaign of the drilling fluids is expected to make a crucial contribution for the petroleum industry in explaining observed differences in hole cleaning properties beyond what todays API/ISO industry standard provides.Copyright © 2015 by ASME