Rotational image deblurring with sparse matrices

[1]  Lothar Reichel,et al.  Old and new parameter choice rules for discrete ill-posed problems , 2013, Numerical Algorithms.

[2]  F. Benedetto,et al.  Shift-invariant approximations of structured shift-variant blurring matrices , 2013, Numerical Algorithms.

[3]  Per Christian Hansen,et al.  Semiconvergence and Relaxation Parameters for Projected SIRT Algorithms , 2012, SIAM J. Sci. Comput..

[4]  M. S. Brown,et al.  Richardson-Lucy Deblurring for Scenes under a Projective Motion Path , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  James G. Nagy,et al.  Synthetic boundary conditions for image deblurring , 2011 .

[6]  Jean Ponce,et al.  Non-uniform Deblurring for Shaken Images , 2010, International Journal of Computer Vision.

[7]  P. Hansen Discrete Inverse Problems: Insight and Algorithms , 2010 .

[8]  N Raghunath,et al.  Motion correction of PET brain images through deconvolution: I. Theoretical development and analysis in software simulations , 2009, Physics in medicine and biology.

[9]  N Raghunath,et al.  Motion correction of PET brain images through deconvolution: II. Practical implementation and algorithm optimization , 2009, Physics in medicine and biology.

[10]  Johnathan M. Bardsley,et al.  Stopping rules for a nonnegatively constrained iterative method for ill-posed Poisson imaging problems , 2008 .

[11]  A. Agarwala,et al.  To appear in the ACM SIGGRAPH conference proceedings High-quality Motion Deblurring from a Single Image ∗ , 2022 .

[12]  Ying Wu,et al.  Motion from blur , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Dianne P. O'Leary,et al.  Residual periodograms for choosing regularization parameters for ill-posed problems , 2008 .

[14]  Claudio Estatico,et al.  Improvement of Space-Invariant Image Deblurring by Preconditioned Landweber Iterations , 2008, SIAM J. Sci. Comput..

[15]  Wei Xiong,et al.  Rotational Motion Deblurring of a Rigid Object from a Single Image , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[16]  Timothy A. Davis,et al.  Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.

[17]  P. Hansen,et al.  Exploiting Residual Information in the Parameter Choice for Discrete Ill-Posed Problems , 2006 .

[18]  James G. Nagy,et al.  Covariance-Preconditioned Iterative Methods for Nonnegatively Constrained Astronomical Imaging , 2005, SIAM J. Matrix Anal. Appl..

[19]  Stanley J. Reeves,et al.  Fast image restoration without boundary artifacts , 2005, IEEE Transactions on Image Processing.

[20]  S. Nayar,et al.  Motion-based motion deblurring , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[22]  J. Nagy,et al.  Steepest Descent, CG, and Iterative Regularization of Ill-Posed Problems , 2003 .

[23]  S. Serra-Capizzano,et al.  A Note on Antireflective Boundary Conditions and Fast Deblurring Models , 2003, SIAM J. Sci. Comput..

[24]  Joonki Paik,et al.  Segmentation-based spatially adaptive motion blur removal and its application to surveillance systems , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[25]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[26]  J. Nagy,et al.  Enforcing nonnegativity in image reconstruction algorithms , 2000, SPIE Optics + Photonics.

[27]  S. Ribaric,et al.  Restoration of images blurred by circular motion , 2000, IWISPA 2000. Proceedings of the First International Workshop on Image and Signal Processing and Analysis. in conjunction with 22nd International Conference on Information Technology Interfaces. (IEEE.

[28]  Dianne P. O'Leary,et al.  Restoring Images Degraded by Spatially Variant Blur , 1998, SIAM J. Sci. Comput..

[29]  M. Bertero,et al.  Projected Landweber method and preconditioning , 1997 .

[30]  Aggelos K. Katsaggelos,et al.  Iterative restoration of fast‐moving objects in dynamic image sequences , 1996 .

[31]  Stanley J. Reeves,et al.  Generalized cross‐validation as a stopping rule for the Richardson‐Lucy algorithm , 1995, Int. J. Imaging Syst. Technol..

[32]  Linda Kaufman,et al.  Maximum likelihood, least squares, and penalized least squares for PET , 1993, IEEE Trans. Medical Imaging.

[33]  Stanley J. Reeves,et al.  A practical stopping rule for iterative signal restoration , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[34]  Alexander A. Sawchuk,et al.  Space-variant image restoration by coordinate transformations* , 1974 .

[35]  A. Sawchuk Space-variant image motion degradation and restoration , 1972 .

[36]  Vincenzo Caglioti,et al.  Estimating Camera Rotation Parameters From a Blurred Image , 2008, VISAPP.

[37]  Johnathan M. Bardsley,et al.  THE STABILIZING PROPERTIES OF NONNEGATIVITY CONSTRAINTS IN LEAST-SQUARES IMAGE RECONSTRUCTION , 2007 .

[38]  Jianhong Shen,et al.  Deblurring images: Matrices, spectra, and filtering , 2007, Math. Comput..

[39]  Stefano Serra Capizzano,et al.  A Note on Antireflective Boundary Conditions and Fast Deblurring Models , 2004, SIAM J. Sci. Comput..

[40]  Jian Zhang Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[41]  H. Joel Trussell,et al.  Identification and restoration of spatially variant motion blurs in sequential images , 1992, IEEE Trans. Image Process..

[42]  A. Girard A fast ‘Monte-Carlo cross-validation’ procedure for large least squares problems with noisy data , 1989 .

[43]  M. Hutchinson A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines , 1989 .

[44]  C. Vogel Computational Methods for Inverse Problems , 1987 .