Decentralized computation for robust stability of large-scale systems with parameters on the hypercube
暂无分享,去创建一个
[1] Masakazu Kojima,et al. SDPARA: SemiDefinite Programming Algorithm paRAllel version , 2003, Parallel Comput..
[2] J. Doyle,et al. Quadratic stability with real and complex perturbations , 1990 .
[3] Pierre-Alexandre Bliman,et al. A Convex Approach to Robust Stability for Linear Systems with Uncertain Scalar Parameters , 2003, SIAM J. Control. Optim..
[4] G. Amdhal,et al. Validity of the single processor approach to achieving large scale computing capabilities , 1967, AFIPS '67 (Spring).
[5] R. Freeman,et al. Robust Nonlinear Control Design: State-Space and Lyapunov Techniques , 1996 .
[6] Ricardo C. L. F. Oliveira,et al. Parameter-Dependent LMIs in Robust Analysis: Characterization of Homogeneous Polynomially Parameter-Dependent Solutions Via LMI Relaxations , 2007, IEEE Transactions on Automatic Control.
[7] C. W. Scherer,et al. Relaxations for Robust Linear Matrix Inequality Problems with Verifications for Exactness , 2005, SIAM J. Matrix Anal. Appl..
[8] Graziano Chesi,et al. Polynomially parameter-dependent Lyapunov functions for robust stability of polytopic systems: an LMI approach , 2005, IEEE Transactions on Automatic Control.
[9] G. Stengle. A nullstellensatz and a positivstellensatz in semialgebraic geometry , 1974 .
[10] P.L.D. Peres,et al. Existence of Homogeneous Polynomial Solutions for Parameter-Dependent Linear Matrix Inequalities with Parameters in the Simplex , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.
[11] Graziano Chesi. Establishing stability and instability of matrix hypercubes , 2005, Syst. Control. Lett..
[12] Pierre-Alexandre Bliman,et al. An existence result for polynomial solutions of parameter-dependent LMIs , 2004, Syst. Control. Lett..
[13] P. Peres,et al. Stability of polytopes of matrices via affine parameter-dependent lyapunov functions : Asymptotically exact LMI conditions , 2005 .
[14] H. James Hoover,et al. Limits to Parallel Computation: P-Completeness Theory , 1995 .
[15] Matthew M. Peet,et al. Solving Large-Scale Robust Stability Problems by Exploiting the Parallel Structure of Polya's Theorem , 2014, IEEE Transactions on Automatic Control.
[16] G. Dullerud,et al. A Course in Robust Control Theory: A Convex Approach , 2005 .
[17] S. Bittanti,et al. Affine Parameter-Dependent Lyapunov Functions and Real Parametric Uncertainty , 1996 .
[18] J. Shamma. Robust stability with time-varying structured uncertainty , 1994, IEEE Trans. Autom. Control..
[19] P. Parrilo. Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .
[20] Matthew M. Peet,et al. Decentralized computation for robust stability analysis of large state-space systems using Polya's theorem , 2012, 2012 American Control Conference (ACC).
[21] V. Kharitonov. Asympotic stability of an equilibrium position of a family of systems of linear differntial equations , 1978 .
[22] Ricardo C. L. F. Oliveira,et al. Robust LMIs with parameters in multi-simplex: Existence of solutions and applications , 2008, 2008 47th IEEE Conference on Decision and Control.
[23] Arkadi Nemirovski,et al. Robust Convex Optimization , 1998, Math. Oper. Res..
[24] Matthew M Peet,et al. A parallel-computing solution for optimization of polynomials , 2010, Proceedings of the 2010 American Control Conference.
[25] Pablo A. Parrilo,et al. Introducing SOSTOOLS: a general purpose sum of squares programming solver , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..
[26] J. Doyle,et al. Essentials of Robust Control , 1997 .