Motion‐adaptive spatio‐temporal regularization for accelerated dynamic MRI

Accelerated magnetic resonance imaging techniques reduce signal acquisition time by undersampling k‐space. A fundamental problem in accelerated magnetic resonance imaging is the recovery of quality images from undersampled k‐space data. Current state‐of‐the‐art recovery algorithms exploit the spatial and temporal structures in underlying images to improve the reconstruction quality. In recent years, compressed sensing theory has helped formulate mathematical principles and conditions that ensure recovery of (structured) sparse signals from undersampled, incoherent measurements. In this article, a new recovery algorithm, motion‐adaptive spatio‐temporal regularization, is presented that uses spatial and temporal structured sparsity of MR images in the compressed sensing framework to recover dynamic MR images from highly undersampled k‐space data. In contrast to existing algorithms, our proposed algorithm models temporal sparsity using motion‐adaptive linear transformations between neighboring images. The efficiency of motion‐adaptive spatio‐temporal regularization is demonstrated with experiments on cardiac magnetic resonance imaging for a range of reduction factors. Results are also compared with k‐t FOCUSS with motion estimation and compensation—another recently proposed recovery algorithm for dynamic magnetic resonance imaging. Magn Reson Med 70:800–812, 2013. © 2012 Wiley Periodicals, Inc.

[1]  Ce Liu,et al.  Exploring new representations and applications for motion analysis , 2009 .

[2]  David Moratal,et al.  “PINOT”: Time‐resolved parallel magnetic resonance imaging with a reduced dynamic field of view , 2011, Magnetic resonance in medicine.

[3]  José Millet-Roig,et al.  Noquist: Reduced field‐of‐view imaging by direct Fourier inversion , 2004, Magnetic resonance in medicine.

[4]  F H Epstein,et al.  Adaptive sensitivity encoding incorporating temporal filtering (TSENSE) † , 2001, Magnetic resonance in medicine.

[5]  D. Kacher,et al.  Sensitivity profiles from an array of coils for encoding and reconstruction in parallel (SPACE RIP) , 2000, Magnetic resonance in medicine.

[6]  Emmanuel J. Candès,et al.  NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..

[7]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[8]  Bruno Madore,et al.  UNFOLD‐SENSE: A parallel MRI method with self‐calibration and artifact suppression , 2004, Magnetic resonance in medicine.

[9]  R. Srinivasan,et al.  Predictive Coding Based on Efficient Motion Estimation , 1985, IEEE Trans. Commun..

[10]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[11]  Michael Lustig,et al.  k-t SPARSE: High frame rate dynamic MRI exploiting spatio-temporal sparsity , 2006 .

[12]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[13]  Leon Axel,et al.  Combination of Compressed Sensing and Parallel Imaging for Highly-Accelerated 3 D First-Pass Cardiac Perfusion MRI , 2009 .

[14]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[15]  Rama Chellappa,et al.  P2C2: Programmable pixel compressive camera for high speed imaging , 2011, CVPR 2011.

[16]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[17]  Emmanuel J. Candès,et al.  Templates for convex cone problems with applications to sparse signal recovery , 2010, Math. Program. Comput..

[18]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[19]  Gene H. Golub,et al.  Matrix computations , 1983 .

[20]  Michael B. Wakin,et al.  A multiscale framework for Compressive Sensing of video , 2009, 2009 Picture Coding Symposium.

[21]  Thomas Brox,et al.  High Accuracy Optical Flow Estimation Based on a Theory for Warping , 2004, ECCV.

[22]  Joel A. Tropp,et al.  Just relax: convex programming methods for identifying sparse signals in noise , 2006, IEEE Transactions on Information Theory.

[23]  Peter Boesiger,et al.  k‐t BLAST and k‐t SENSE: Dynamic MRI with high frame rate exploiting spatiotemporal correlations , 2003, Magnetic resonance in medicine.

[24]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[25]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[26]  Gary J. Sullivan,et al.  Video Compression - From Concepts to the H.264/AVC Standard , 2005, Proceedings of the IEEE.

[27]  Ajay Luthra,et al.  Overview of the H.264/AVC video coding standard , 2003, IEEE Trans. Circuits Syst. Video Technol..

[28]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[29]  Anil K. Jain,et al.  Displacement Measurement and Its Application in Interframe Image Coding , 1981, IEEE Trans. Commun..

[30]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[31]  Jong Chul Ye,et al.  Motion estimated and compensated compressed sensing dynamic magnetic resonance imaging: What we can learn from video compression techniques , 2010, Int. J. Imaging Syst. Technol..

[32]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[33]  Michael T. Orchard,et al.  Overlapped block motion compensation: an estimation-theoretic approach , 1994, IEEE Trans. Image Process..

[34]  Richard Baraniuk,et al.  The Dual-tree Complex Wavelet Transform , 2007 .

[35]  L. Ying,et al.  Accelerating SENSE using compressed sensing , 2009, Magnetic resonance in medicine.

[36]  Julian Magarey,et al.  Motion estimation using a complex-valued wavelet transform , 1998, IEEE Trans. Signal Process..

[37]  Jong Chul Ye,et al.  k‐t FOCUSS: A general compressed sensing framework for high resolution dynamic MRI , 2009, Magnetic resonance in medicine.

[38]  Yin Zhang,et al.  Fixed-Point Continuation for l1-Minimization: Methodology and Convergence , 2008, SIAM J. Optim..

[39]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[40]  A. A. Samsonov,et al.  Design of Temporally Constrained Compressed Sensing Methods for Accelerated Dynamic MRI , 2009 .