Frameworks for Extended Solids: Geometrical Design Principles

The basic geometries for three-dimensional low-connectivity nets are described. Examples of open framework solids with these topologies are adduced for illustration. Attention is drawn to methods of producing open frameworks by decoration and expansion of simple nets.

[1]  Reineke,et al.  A Microporous Lanthanide-Organic Framework. , 1999, Angewandte Chemie.

[2]  O. Yaghi,et al.  Supertetrahedral sulfide crystals with giant cavities and channels , 1999, Science.

[3]  W. M. Meier,et al.  Atlas of Zeolite Structure Types , 1988 .

[4]  Hailian Li,et al.  Selective Guest Binding by Tailored Channels in a 3-D Porous Zinc(II)−Benzenetricarboxylate Network , 1997 .

[5]  Q. Huo,et al.  Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures , 1993, Science.

[6]  R. Robson,et al.  Six Interpenetrating Quartz‐Like Nets in the Structure of ZnAu2(CN)4 , 1995 .

[7]  Hailian Li,et al.  T-SHAPED MOLECULAR BUILDING UNITS IN THE POROUS STRUCTURE OF AG(4,4'-BPY).NO3 , 1996 .

[8]  E. Koch,et al.  Crystal structures. I. Patterns and symmetry , 1997 .

[9]  F. Disalvo,et al.  Synthesis and structure of β-Ca3Ga2N4, a ternary nitride with two interpenetrating three dimensional nets , 1998 .

[10]  Jacek Klinowski,et al.  Systematic enumeration of crystalline networks , 1999, Nature.

[11]  S. Batten,et al.  Ni(tpt)(NO3 )2 -A Three-Dimensional Network with the Exceptional (12,3) Topology: A Self-Entangled Single Net. , 1999, Angewandte Chemie.

[12]  S. Bobev,et al.  Synthesis and Characterization of Stable Stoichiometric Clathrates of Silicon and Germanium: Cs8Na16Si136 and Cs8Na16Ge136 , 1999 .

[13]  Younghee Ko,et al.  A novel 3-dimensional open framework sulfide based upon the [In10S20]10- supertetrahedron : DMA-InS-SB1 , 1998 .

[14]  Brendan F. Abrahams,et al.  A Cubic (3,4)‐Connected Net with Large Cavities in Solvated [Cu3(tpt)4](ClO4)3 (tpt = 2,4,6‐Tri(4‐pyridyl)‐1,3,5‐triazine) , 1996 .

[15]  M. O'Keeffe,et al.  Dense and rare four-connected nets , 1991 .

[16]  Shaoxu Han,et al.  Enumeration of four-connected three-dimensional nets. I. Conversion of all edges of simple three-connected two-dimensional nets into crankshaft chains. , 1999, Acta crystallographica. Section A, Foundations of crystallography.

[17]  A. Hippel,et al.  Molecular Designing of Materials: Science, guided by molecular understanding, takes up the challenge to create materials for the future. , 1962 .

[18]  James D. Martin,et al.  Halozeotypes: a New Generation of Zeolite‐Type Materials , 1997 .

[19]  Vladimir E. Fedorov,et al.  A Novel Framework Type for Inorganic Clusters with Cyanide Ligands: Crystal Structures of Cs2Mn3[Re6Se8(CN)6]2⋅15 H2O and (H3O)2Co3[Re6Se8(CN)6]2⋅14.5 H2O , 1998 .

[20]  Michael O'Keeffe Crystal structures: Tiling by numbers , 1999, Nature.

[21]  Michael O'Keeffe,et al.  Vertex symbols for zeolite nets , 1997 .

[22]  M. O'keeffe,et al.  Germanate Zeolites: Contrasting the Behavior of Germanate and Silicate Structures Built from Cubic T8O20 Units (T=Ge or Si) , 1999 .

[23]  N. Rivier,et al.  Foams and emulsions , 1999 .

[24]  D. Schwarzenbach,et al.  The crystal structure of Prussian Blue: Fe4[Fe(CN)6]3.xH2O , 1977 .

[25]  K. Houk,et al.  Alternative descriptions of the C23 (PbCl2), C37 (Co2Si), B8b (Ni2In) and related structure types , 1992 .

[26]  D. Proserpio,et al.  Nanoporous three-dimensional networks topologically related to Cooperite from the self-assembly of copper(I) centres and the “square-planar” building block 1,2,4,5-tetracyanobenzene , 1999 .

[27]  Hailian Li,et al.  Synthetic Strategies, Structure Patterns, and Emerging Properties in the Chemistry of Modular Porous Solids† , 1998 .

[28]  W. Fischer,et al.  Sphere packings with three contacts per sphere and the problem of the least dense sphere packing , 1995 .

[29]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[30]  G. Brunner Parameters for frameworks and space filling polyhedra , 1981 .

[31]  Stephen T. Hyde,et al.  Minimal surfaces and structures: from inorganic and metal crystals to cell membranes and biopolymers , 1988 .

[32]  J. Rimstidt,et al.  Crystal chemistry of tetrahedrite , 1988 .

[33]  J. Parise,et al.  Synthesis and structure of MnGe4S10.(C6H14N2).3H2O : A novel sulfide framework analogous to zeolite Li-A(BW) , 1997 .

[34]  Mohamed Eddaoudi,et al.  Highly Porous and Stable Metal−Organic Frameworks: Structure Design and Sorption Properties , 2000 .

[35]  Functional Micropore Chemistry of Crystalline Metal Complex-Assembled Compounds , 1998 .

[36]  A. F. Wells Three-dimensional nets and polyhedra , 1977 .

[37]  B. Hyde,et al.  The related structures of α-Mn, sodalite, Sb2Tl7,etc. , 1981 .

[38]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[39]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[40]  Jerry Donohue The structures of the elements , 1974 .

[41]  Davide M. Proserpio,et al.  Complex Interwoven Polymeric Frames from the Self-Assembly of Silver(I) Cations and Sebaconitrile , 1999 .

[42]  M. Zabel,et al.  A Novel Three-Dimensional Tellurium Array: High-Pressure Synthesis and Crystal Structure of AgTe3† , 1982 .

[43]  Michael O'Keeffe,et al.  Noninterpenetrating indium sulfide supertetrahedral cristobalite framework , 1999 .

[44]  Thomas L. Groy,et al.  Directed Transformation of Molecules to Solids: Synthesis of a Microporous Sulfide from Molecular Germanium Sulfide Cages , 1994 .

[45]  O. Terasaki,et al.  Cubosome Description of the Inorganic Mesoporous Structure MCM-48 , 1997 .

[46]  W. Schnick,et al.  Zn7[P12N24]Cl2 — ein Sodalith mit einem Phosphor‐Stickstoff‐Grundgerüst , 1992 .

[47]  S. Hansen Expanding zeolite-type nets , 1990, Nature.