Directional Hölder Metric Regularity

This paper sheds new light on regularity of multifunctions through various characterizations of directional Hölder/Lipschitz metric regularity, which are based on the concepts of slope and coderivative. By using these characterizations, we show that directional Hölder/Lipschitz metric regularity is stable, when the multifunction under consideration is perturbed suitably. Applications of directional Hölder/Lipschitz metric regularity to investigate the stability and the sensitivity analysis of parameterized optimization problems are also discussed.

[1]  R. Rockafellar,et al.  The radius of metric regularity , 2002 .

[2]  Marc Quincampoix,et al.  Hölder metric regularity of set-valued maps , 2012, Math. Program..

[3]  R. Rockafellar First- and second-order epi-differentiability in nonlinear programming , 1988 .

[4]  J. Penot Second-Order Conditions for Optimization Problems with Constraints , 1999 .

[5]  F. Giannessi Variational Analysis and Generalized Differentiation , 2006 .

[6]  Huynh van Ngai,et al.  Error Bounds in Metric Spaces and Application to the Perturbation Stability of Metric Regularity , 2008, SIAM J. Optim..

[7]  Helmut Gfrerer,et al.  JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics On Directional Metric Subregularity and Second-Order Optimality Conditions for a Class of Nonsmooth Mathematical Programs , 2012 .

[8]  Helmut Gfrerer,et al.  JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics On Directional Metric Regularity, Subregularity and Optimality Conditions for Nonsmooth Mathematical Programs , 2012 .

[9]  A. Ioffe Metric regularity and subdifferential calculus , 2000 .

[10]  A. Kruger Error bounds and metric subregularity , 2014, 1405.1130.

[11]  J. Borwein,et al.  Verifiable necessary and sufficient conditions for openness and regularity of set-valued and single-valued maps , 1988 .

[12]  René Henrion,et al.  About error bounds in metric spaces , 2011, OR.

[13]  Phan Nhat Tinh,et al.  Metric subregularity of multifunctions and applications ∗ , 2012 .

[14]  Huynh van Ngai,et al.  Metric Subregularity of Multifunctions: First and Second Order Infinitesimal Characterizations , 2015, Math. Oper. Res..

[15]  R. Cominetti Metric regularity, tangent sets, and second-order optimality conditions , 1990 .

[16]  A. D. Ioffe,et al.  Towards variational analysis in metric spaces: metric regularity and fixed points , 2010, Math. Program..

[17]  Boris S. Mordukhovich,et al.  Hölder Metric Subregularity with Applications to Proximal Point Method , 2012, SIAM J. Optim..

[18]  Michel Théra,et al.  Error Bounds and Implicit Multifunction Theorem in Smooth Banach Spaces and Applications to Optimization , 2004 .

[19]  B. Mordukhovich,et al.  Stablity of Set-Valued Mappings In Infinite Dimensions: Point Criteria and Applications , 1997 .

[20]  J. Frédéric Bonnans,et al.  Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.

[21]  Alexey F. Izmailov,et al.  Directional Stability Theorem and Directional Metric Regularity , 2006, Math. Oper. Res..

[22]  H. Frankowska Some inverse mapping theorems , 1990 .

[23]  Alexander D. Ioffe,et al.  Nonlinear regularity models , 2013, Mathematical Programming.

[24]  Jonathan M. Borwein,et al.  Viscosity Solutions and Viscosity Subderivatives in Smooth Banach Spaces with Applications to Metric Regularity , 1996 .

[25]  Alexander Y. Kruger,et al.  Extensions of metric regularity , 2009 .

[26]  Diethard Klatte,et al.  Nonsmooth Equations in Optimization: "Regularity, Calculus, Methods And Applications" , 2006 .

[27]  Jean-Noël Corvellec,et al.  Characterizations of error bounds for lower semicontinuous functions on metric spaces , 2004 .

[28]  Helmut Gfrerer,et al.  First Order and Second Order Characterizations of Metric Subregularity and Calmness of Constraint Set Mappings , 2011, SIAM J. Optim..

[29]  Lionel Thibault,et al.  Metric regularity and subdifferential calculus in Banach spaces , 1995 .

[30]  J. Penot Calculus Without Derivatives , 2012 .

[31]  Alexander Y. Kruger,et al.  Error Bounds and Hölder Metric Subregularity , 2014, 1411.6414.

[32]  D. Klatte Book review: Implicit Functions and Solution Mappings:A View from Variational Analysis. Second Edition. By A. L. Dontchev and R. T. Rockafellar. Springer, New York, 2014 , 2015 .

[33]  D. Azé,et al.  A Unified Theory for Metric Regularity of Multifunctions , 2006 .

[34]  A. Ioffe,et al.  Metric Regularity. Theory and Applications - a survey , 2015, 1505.07920.

[35]  Adrian S. Lewis,et al.  Perturbations and Metric Regularity , 2005 .

[36]  Aram V. Arutyunov,et al.  Directional Regularity and Metric Regularity , 2007, SIAM J. Optim..

[37]  D. Klatte Nonsmooth equations in optimization , 2002 .

[38]  R. Rockafellar,et al.  Implicit Functions and Solution Mappings , 2009 .

[39]  Jonathan M. Borwein,et al.  On the Bartle-Graves theorem , 2003 .

[40]  D. Azé,et al.  A survey on error bounds for lower semicontinuous functions , 2003 .

[41]  Boris S. Mordukhovich,et al.  Higher-order metric subregularity and its applications , 2015, J. Glob. Optim..

[42]  J. Penot Metric regularity, openness and Lipschitzian behavior of multifunctions , 1989 .

[43]  L. Thibault,et al.  Coderivatives of multivalued mappings, locally compact cones and metric regularity , 1999 .

[44]  A. Kruger,et al.  Metric regularity and systems of generalized equations , 2008 .