Compact Forbidden-Set Routing

We study labelling schemes for X-constrained path problems. Given a graph (V,E) and X ⊆ V, a path is X-constrained if all intermediate vertices avoid X. We study the problem of assigning labels J(x) to vertices so that given {J(x) : x ∈ X} for any X ⊆ V, we can route on the shortest X-constrained path between x, y ∈ X. This problem is motivated by Internet routing, where the presence of routing policies means that shortest-path routing is not appropriate. For graphs of tree width k, we give a routing scheme using routing tables of size O(k2 log2 n). We introduce m-clique width, generalizing clique width, to show that graphs of m-clique width k also have a routing scheme using size O(k2 log2 n) tables.

[1]  Fan Chung Graham,et al.  Internet and Network Economics, Third International Workshop, WINE 2007, San Diego, CA, USA, December 12-14, 2007, Proceedings , 2007, WINE.

[2]  Mikkel Thorup,et al.  Compact routing schemes , 2001, SPAA '01.

[3]  David Peleg,et al.  Labeling Schemes for Dynamic Tree Networks , 2002, STACS.

[4]  HolmJacob,et al.  Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity , 2001 .

[5]  Mikkel Thorup,et al.  Near-optimal fully-dynamic graph connectivity , 2000, STOC '00.

[6]  Edward Allburn,et al.  Graph decomposition , 1990 .

[7]  Egon Wanke,et al.  k-NLC Graphs and Polynomial Algorithms , 1994, Discret. Appl. Math..

[8]  Toshihide Ibaraki,et al.  A linear-time algorithm for finding a sparsek-connected spanning subgraph of ak-connected graph , 1992, Algorithmica.

[9]  Udi Rotics,et al.  On the Relationship between Clique-Width and Treewidth , 2001, WG.

[10]  Richard J. Gibbens,et al.  Towards a Unified Theory of Policy-Based Routing , 2006, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications.

[11]  Stephen Alstrup,et al.  Nearest common ancestors: a survey and a new distributed algorithm , 2002, SPAA.

[12]  Hans L. Bodlaender,et al.  Discovering Treewidth , 2005, SOFSEM.

[13]  Hiroshi Nagamochi,et al.  An Efficient NC Algorithm for a Sparse k-Edge-Connectivity Certificate , 1998, J. Algorithms.

[14]  Ramakrishna Thurimella Sub-Linear Distributed Algorithms for Sparse Certificates and Biconnected Components , 1997, J. Algorithms.

[15]  Esther Jennings,et al.  Distributed algorithms for sparse k-connectivity certificates , 1996, PODC '96.

[16]  Robert E. Tarjan,et al.  Finding Biconnected Components and Computing Tree Functions in Logarithmic Parallel Time (Extended Summary) , 1984, FOCS.

[17]  Bernard Chazelle,et al.  A Functional Approach to Data Structures and Its Use in Multidimensional Searching , 1988, SIAM J. Comput..

[18]  Hans L. Bodlaender,et al.  NC-Algorithms for Graphs with Small Treewidth , 1988, WG.

[19]  David C. Walden,et al.  The ARPA Network Design Decisions , 1977, Comput. Networks.

[20]  David Peleg,et al.  Proximity-Preserving Labeling Schemes and Their Applications , 1999, WG.

[21]  Bruno Courcelle,et al.  An algebraic theory of graph reduction , 1993, JACM.

[22]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[23]  David Peleg,et al.  Compact routing schemes with low stretch factor , 2003, J. Algorithms.

[24]  Moni Naor,et al.  Implicit representation of graphs , 1992, STOC '88.

[25]  Gordon T. Wilfong,et al.  The stable paths problem and interdomain routing , 2002, TNET.

[26]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[27]  Sang-il Oum,et al.  Approximating rank-width and clique-width quickly , 2005, TALG.

[28]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[29]  Nicola Santoro,et al.  Labelling and Implicit Routing in Networks , 1985, Computer/law journal.

[30]  Mikkel Thorup,et al.  Sampling to provide or to bound: With applications to fully dynamic graph algorithms , 1997, Random Struct. Algorithms.

[31]  Mikkel Thorup,et al.  Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity , 2001, JACM.

[32]  Ran Raz,et al.  Distance labeling in graphs , 2001, SODA '01.

[33]  B. A. Reed,et al.  Algorithmic Aspects of Tree Width , 2003 .

[34]  David Peleg,et al.  Compact and localized distributed data structures , 2003, Distributed Computing.

[35]  Martin Grohe,et al.  The complexity of first-order and monadic second-order logic revisited , 2004, Ann. Pure Appl. Log..

[36]  Joan Feigenbaum,et al.  Mechanism design for policy routing , 2004, PODC.

[37]  David Eppstein,et al.  The Polyhedral Approach to the Maximum Planar Subgraph Problem: New Chances for Related Problems , 1994, GD.

[38]  Robin J. Wilson Introduction to Graph Theory , 1974 .

[39]  Wolfgang Maass,et al.  On the communication complexity of graph properties , 1988, STOC '88.

[40]  Udi Rotics,et al.  Clique-width minimization is NP-hard , 2006, STOC '06.

[41]  Edith Cohen,et al.  Reachability and distance queries via 2-hop labels , 2002, SODA '02.

[42]  Paul D. Seymour,et al.  Graph Minors: XV. Giant Steps , 1996, J. Comb. Theory, Ser. B.

[43]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[44]  G. Dirac Some Theorems on Abstract Graphs , 1952 .

[45]  Christian Worm Mortensen,et al.  Fully-dynamic two dimensional orthogonal range and line segment intersection reporting in logarithmic time , 2003, SODA '03.

[46]  David Eppstein Diameter and Treewidth in Minor-Closed Graph Families , 2000, Algorithmica.

[47]  Hans L. Bodlaender,et al.  A Tourist Guide through Treewidth , 1993, Acta Cybern..

[48]  Sein Win,et al.  On a connection between the existence ofk-trees and the toughness of a graph , 1989, Graphs Comb..

[49]  R. Gregory Taylor Review of "Boolean Functions and Computation Models by Peter Clote and Evangelos Kranakis", Springer-Verlag, 2002 , 2004, SIGA.

[50]  Pierre Fraigniaud,et al.  Routing in Trees , 2001, ICALP.

[51]  Mikkel Thorup,et al.  Tree based MPLS routing , 2003, SPAA '03.

[52]  Peter Clote,et al.  Boolean Functions and Computation Models , 2002, Texts in Theoretical Computer Science. An EATCS Series.

[53]  Xiaowei Yang,et al.  Compact routing on Internet-like graphs , 2003, IEEE INFOCOM 2004.

[54]  Bruno Courcelle,et al.  Query efficient implementation of graphs of bounded clique-width , 2003, Discret. Appl. Math..

[55]  Joan Feigenbaum,et al.  Subjective-cost policy routing , 2007, Theor. Comput. Sci..

[56]  David Eppstein,et al.  Sparsification—a technique for speeding up dynamic graph algorithms , 1997, JACM.

[57]  Bruno Courcelle,et al.  Monadic Second-Order Evaluations on Tree-Decomposable Graphs , 1993, Theor. Comput. Sci..

[58]  Eyal Kushilevitz,et al.  Communication Complexity , 1997, Adv. Comput..

[59]  James R. Lee,et al.  Improved approximation algorithms for minimum-weight vertex separators , 2005, STOC '05.

[60]  Lenore Cowen,et al.  Compact routing with minimum stretch , 1999, SODA '99.

[61]  Mikkel Thorup,et al.  Approximate distance oracles , 2005, J. ACM.

[62]  David Peleg Informative Labeling Schemes for Graphs , 2000, MFCS.

[63]  Lixin Gao,et al.  Stable Internet routing without global coordination , 2000, SIGMETRICS '00.

[64]  João L. Sobrinho,et al.  Network routing with path vector protocols: theory and applications , 2003, SIGCOMM '03.

[65]  Eli Upfal,et al.  A trade-off between space and efficiency for routing tables , 1989, JACM.

[66]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[67]  Kathryn Fraughnaugh,et al.  Introduction to graph theory , 1973, Mathematical Gazette.

[68]  Mikkel Thorup,et al.  Sampling to provide or to bound: with applications to fully dynamic graph algorithms , 1997 .

[69]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[70]  Brenda S. Baker,et al.  Approximation algorithms for NP-complete problems on planar graphs , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[71]  Nick Feamster,et al.  Implications of Autonomy for the Expressiveness of Policy Routing , 2005, IEEE/ACM Transactions on Networking.

[72]  Greg N. Frederickson,et al.  Data structures for on-line updating of minimum spanning trees , 1983, STOC.

[73]  Martin Fürer,et al.  Approximating the Minimum-Degree Steiner Tree to within One of Optimal , 1994, J. Algorithms.

[74]  David R. Karger,et al.  Random sampling in cut, flow, and network design problems , 1994, STOC '94.

[75]  Martin Dietzfelbinger,et al.  The linear-array problem in communication complexity resolved , 1997, STOC '97.

[76]  Shay Kutten,et al.  Proof labeling schemes , 2005, PODC '05.

[77]  Sang-il Oum,et al.  Approximating rank-width and clique-width quickly , 2008, ACM Trans. Algorithms.

[78]  Deborah Estrin,et al.  Persistent route oscillations in inter-domain routing , 2000, Comput. Networks.