A Chaotic System with Different Families of Hidden Attractors

The presence of hidden attractors in dynamical systems has received considerable attention recently both in theory and applications. A novel three-dimensional autonomous chaotic system with hidden attractors is introduced in this paper. It is exciting that this chaotic system can exhibit two different families of hidden attractors: hidden attractors with an infinite number of equilibrium points and hidden attractors without equilibrium. Dynamical behaviors of such system are discovered through mathematical analysis, numerical simulations and circuit implementation.

[1]  Nikolay V. Kuznetsov,et al.  Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.

[2]  O. Rössler An equation for continuous chaos , 1976 .

[3]  Zhouchao Wei,et al.  Hidden Hyperchaotic Attractors in a Modified Lorenz-Stenflo System with Only One Stable Equilibrium , 2014, Int. J. Bifurc. Chaos.

[4]  Nikolay V. Kuznetsov,et al.  Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor , 2014 .

[5]  Julien Clinton Sprott,et al.  A chaotic system with a single unstable node , 2015 .

[6]  Julien Clinton Sprott,et al.  Coexisting Hidden Attractors in a 4-D Simplified Lorenz System , 2014, Int. J. Bifurc. Chaos.

[7]  Carlos Sánchez-López,et al.  Integrated circuit generating 3- and 5-scroll attractors , 2012 .

[8]  Nikolay V. Kuznetsov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[9]  Jesus M. Munoz-Pacheco,et al.  Frequency limitations in generating multi-scroll chaotic attractors using CFOAs , 2014 .

[10]  E. O. Ochola,et al.  A hyperchaotic system without equilibrium , 2012 .

[11]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[12]  Nikolay V. Kuznetsov,et al.  Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity , 2015, Commun. Nonlinear Sci. Numer. Simul..

[13]  Julien Clinton Sprott,et al.  Recent new examples of hidden attractors , 2015 .

[14]  Guanrong Chen,et al.  A chaotic system with only one stable equilibrium , 2011, 1101.4067.

[15]  José-Cruz Nuñez Pérez,et al.  FPGA realization of multi-scroll chaotic oscillators , 2015, Commun. Nonlinear Sci. Numer. Simul..

[16]  Carlos Sánchez-López,et al.  Multiscroll floating gate–based integrated chaotic oscillator , 2013, Int. J. Circuit Theory Appl..

[17]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[18]  Christos Volos,et al.  A novel memristive neural network with hidden attractors and its circuitry implementation , 2015, Science China Technological Sciences.

[19]  Sajad Jafari,et al.  Three-dimensional chaotic autonomous system with only one stable equilibrium: Analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form , 2014 .

[20]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[21]  Julien Clinton Sprott,et al.  Cost Function Based on Gaussian Mixture Model for Parameter Estimation of a Chaotic Circuit with a Hidden Attractor , 2014, Int. J. Bifurc. Chaos.

[22]  Zhouchao Wei,et al.  Hidden Attractors and Dynamical Behaviors in an Extended Rikitake System , 2015, Int. J. Bifurc. Chaos.

[23]  T. N. Mokaev,et al.  Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion Homoclinic orbits, and self-excited and hidden attractors , 2015 .

[24]  Nikolay V. Kuznetsov,et al.  Control of multistability in hidden attractors , 2015 .

[25]  Julien Clinton Sprott,et al.  A Proposed Standard for the Publication of New Chaotic Systems , 2011, Int. J. Bifurc. Chaos.

[26]  Julien Clinton Sprott,et al.  Elementary quadratic chaotic flows with a single non-hyperbolic equilibrium , 2015 .

[27]  Qigui Yang,et al.  Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria , 2011 .

[28]  Zhouchao Wei,et al.  On the periodic orbit bifurcating from one single non-hyperbolic equilibrium in a chaotic jerk system , 2015 .

[29]  Julien Clinton Sprott,et al.  Elementary quadratic chaotic flows with no equilibria , 2013 .

[30]  Viet-Thanh Pham,et al.  Synchronization and circuit design of a chaotic system with coexisting hidden attractors , 2015 .

[31]  Awadhesh Prasad,et al.  Controlling Dynamics of Hidden Attractors , 2015, Int. J. Bifurc. Chaos.

[32]  Julien Clinton Sprott,et al.  Simple chaotic flows with a line equilibrium , 2013 .