A Chaotic System with Different Families of Hidden Attractors
暂无分享,去创建一个
Sundarapandian Vaidyanathan | Viet-Thanh Pham | Sajad Jafari | Christos K. Volos | Tomasz Kapitaniak | Xiong Wang | T. Kapitaniak | S. Vaidyanathan | S. Jafari | Xiong Wang | V. Pham | C. Volos
[1] Nikolay V. Kuznetsov,et al. Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.
[2] O. Rössler. An equation for continuous chaos , 1976 .
[3] Zhouchao Wei,et al. Hidden Hyperchaotic Attractors in a Modified Lorenz-Stenflo System with Only One Stable Equilibrium , 2014, Int. J. Bifurc. Chaos.
[4] Nikolay V. Kuznetsov,et al. Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor , 2014 .
[5] Julien Clinton Sprott,et al. A chaotic system with a single unstable node , 2015 .
[6] Julien Clinton Sprott,et al. Coexisting Hidden Attractors in a 4-D Simplified Lorenz System , 2014, Int. J. Bifurc. Chaos.
[7] Carlos Sánchez-López,et al. Integrated circuit generating 3- and 5-scroll attractors , 2012 .
[8] Nikolay V. Kuznetsov,et al. Hidden attractor in smooth Chua systems , 2012 .
[9] Jesus M. Munoz-Pacheco,et al. Frequency limitations in generating multi-scroll chaotic attractors using CFOAs , 2014 .
[10] E. O. Ochola,et al. A hyperchaotic system without equilibrium , 2012 .
[11] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[12] Nikolay V. Kuznetsov,et al. Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity , 2015, Commun. Nonlinear Sci. Numer. Simul..
[13] Julien Clinton Sprott,et al. Recent new examples of hidden attractors , 2015 .
[14] Guanrong Chen,et al. A chaotic system with only one stable equilibrium , 2011, 1101.4067.
[15] José-Cruz Nuñez Pérez,et al. FPGA realization of multi-scroll chaotic oscillators , 2015, Commun. Nonlinear Sci. Numer. Simul..
[16] Carlos Sánchez-López,et al. Multiscroll floating gate–based integrated chaotic oscillator , 2013, Int. J. Circuit Theory Appl..
[17] G. Leonov,et al. Localization of hidden Chuaʼs attractors , 2011 .
[18] Christos Volos,et al. A novel memristive neural network with hidden attractors and its circuitry implementation , 2015, Science China Technological Sciences.
[19] Sajad Jafari,et al. Three-dimensional chaotic autonomous system with only one stable equilibrium: Analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form , 2014 .
[20] Guanrong Chen,et al. YET ANOTHER CHAOTIC ATTRACTOR , 1999 .
[21] Julien Clinton Sprott,et al. Cost Function Based on Gaussian Mixture Model for Parameter Estimation of a Chaotic Circuit with a Hidden Attractor , 2014, Int. J. Bifurc. Chaos.
[22] Zhouchao Wei,et al. Hidden Attractors and Dynamical Behaviors in an Extended Rikitake System , 2015, Int. J. Bifurc. Chaos.
[23] T. N. Mokaev,et al. Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion Homoclinic orbits, and self-excited and hidden attractors , 2015 .
[24] Nikolay V. Kuznetsov,et al. Control of multistability in hidden attractors , 2015 .
[25] Julien Clinton Sprott,et al. A Proposed Standard for the Publication of New Chaotic Systems , 2011, Int. J. Bifurc. Chaos.
[26] Julien Clinton Sprott,et al. Elementary quadratic chaotic flows with a single non-hyperbolic equilibrium , 2015 .
[27] Qigui Yang,et al. Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria , 2011 .
[28] Zhouchao Wei,et al. On the periodic orbit bifurcating from one single non-hyperbolic equilibrium in a chaotic jerk system , 2015 .
[29] Julien Clinton Sprott,et al. Elementary quadratic chaotic flows with no equilibria , 2013 .
[30] Viet-Thanh Pham,et al. Synchronization and circuit design of a chaotic system with coexisting hidden attractors , 2015 .
[31] Awadhesh Prasad,et al. Controlling Dynamics of Hidden Attractors , 2015, Int. J. Bifurc. Chaos.
[32] Julien Clinton Sprott,et al. Simple chaotic flows with a line equilibrium , 2013 .