Robust Odometry and Mapping for Multi-LiDAR Systems with Online Extrinsic Calibration

Combining multiple LiDARs enables a robot to maximize its perceptual awareness of environments and obtain sufficient measurements, which is promising for simultaneous localization and mapping (SLAM). This paper proposes a system to achieve robust and simultaneous extrinsic calibration, odometry, and mapping for multiple LiDARs. Our approach starts with measurement preprocessing to extract edge and planar features from raw measurements. After a motion and extrinsic initialization procedure, a sliding window-based multi-LiDAR odometry runs onboard to estimate poses with online calibration refinement and convergence identification. We further develop a mapping algorithm to construct a global map and optimize poses with sufficient features together with a method to model and reduce data uncertainty. We validate our approach's performance with extensive experiments on ten sequences (4.60km total length) for the calibration and SLAM and compare them against the state-of-the-art. We demonstrate that the proposed work is a complete, robust, and extensible system for various multi-LiDAR setups. The source code, datasets, and demonstrations are available at this https URL.

[1]  Ming Liu,et al.  LINS: A Lidar-Inerital State Estimator for Robust and Fast Navigation , 2019, ArXiv.

[2]  Yong Liu,et al.  LIC-Fusion: LiDAR-Inertial-Camera Odometry , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[3]  Xu Liu,et al.  SLOAM: Semantic Lidar Odometry and Mapping for Forest Inventory , 2019, IEEE Robotics and Automation Letters.

[4]  Anastasios I. Mourikis,et al.  Motion tracking with fixed-lag smoothing: Algorithm and consistency analysis , 2011, 2011 IEEE International Conference on Robotics and Automation.

[5]  Hao Wang,et al.  Robust and Precise Vehicle Localization Based on Multi-Sensor Fusion in Diverse City Scenes , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[6]  Laurent Itti,et al.  Finding planes in LiDAR point clouds for real-time registration , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[7]  Qing Su,et al.  AVP-SLAM: Semantic Visual Mapping and Localization for Autonomous Vehicles in the Parking Lot , 2020, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[8]  Joan Solà,et al.  Quaternion kinematics for the error-state Kalman filter , 2015, ArXiv.

[9]  Soohwan Kim,et al.  Complementary Perception for Handheld SLAM , 2018, IEEE Robotics and Automation Letters.

[10]  Hongbin Zha,et al.  Pairwise LIDAR calibration using multi-type 3D geometric features in natural scene , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[12]  John J. Leonard,et al.  Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age , 2016, IEEE Transactions on Robotics.

[13]  Cyrill Stachniss,et al.  On Geometric Models and Their Accuracy for Extrinsic Sensor Calibration , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[14]  Teresa A. Vidal-Calleja,et al.  IN2LAAMA: Inertial Lidar Localization Autocalibration and Mapping , 2019, IEEE Transactions on Robotics.

[15]  Juan I. Nieto,et al.  Motion-Based Calibration of Multimodal Sensor Extrinsics and Timing Offset Estimation , 2016, IEEE Transactions on Robotics.

[16]  Wolfram Burgard,et al.  Simultaneous calibration, localization, and mapping , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[17]  Tom Duckett,et al.  Scan registration for autonomous mining vehicles using 3D‐NDT , 2007, J. Field Robotics.

[18]  Adam Herout,et al.  Collar Line Segments for fast odometry estimation from Velodyne point clouds , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[19]  Sven Behnke,et al.  Evaluation of registration methods for sparse 3D laser scans , 2015, 2015 European Conference on Mobile Robots (ECMR).

[20]  Teresa A. Vidal-Calleja,et al.  IN2LAMA: INertial Lidar Localisation And MApping , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[21]  Yuxiang Sun,et al.  GMMLoc: Structure Consistent Visual Localization With Gaussian Mixture Models , 2020, IEEE Robotics and Automation Letters.

[22]  François Goulette,et al.  On the covariance of ICP-based scan-matching techniques , 2014, 2016 American Control Conference (ACC).

[23]  Cyrill Stachniss,et al.  Efficient Surfel-Based SLAM using 3D Laser Range Data in Urban Environments , 2018, Robotics: Science and Systems.

[24]  Siddharth Agarwal,et al.  Ford Multi-AV Seasonal Dataset , 2020, ArXiv.

[25]  Pavel Zemcík,et al.  Fast covariance recovery in incremental nonlinear least square solvers , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[26]  Laurent Kneip,et al.  Online calibration of exterior orientations of a vehicle-mounted surround-view camera system , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[27]  Ming Liu,et al.  Real-Time, Environmentally-Robust 3D LiDAR Localization , 2019, 2019 IEEE International Conference on Imaging Systems and Techniques (IST).

[28]  Robert Mahony,et al.  VDO-SLAM: A Visual Dynamic Object-aware SLAM System , 2020, ArXiv.

[29]  Andrea Censi,et al.  An accurate closed-form estimate of ICP's covariance , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[30]  Martin Lauer,et al.  LIMO: Lidar-Monocular Visual Odometry , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[31]  Ming Liu,et al.  Automatic Calibration of Dual-LiDARs Using Two Poles Stickered with Retro-Reflective Tape , 2019, 2019 IEEE International Conference on Imaging Systems and Techniques (IST).

[32]  Timothy D. Barfoot,et al.  State Estimation for Robotics , 2017 .

[33]  Jianhao Jiao,et al.  Automatic Calibration of Multiple 3D LiDARs in Urban Environments , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[34]  Michael Bosse,et al.  Robust Estimation and Applications in Robotics , 2016, Found. Trends Robotics.

[35]  Wenshuo Wang,et al.  An Optimal LiDAR Configuration Approach for Self-Driving Cars , 2018, ArXiv.

[36]  Dragomir Anguelov,et al.  Scalability in Perception for Autonomous Driving: Waymo Open Dataset , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Cyrill Stachniss,et al.  OverlapNet: Loop Closing for LiDAR-based SLAM , 2020, Robotics: Science and Systems.

[38]  Guoquan Huang,et al.  Visual-Inertial Localization With Prior LiDAR Map Constraints , 2019, IEEE Robotics and Automation Letters.

[39]  Ming Liu,et al.  Tightly Coupled 3D Lidar Inertial Odometry and Mapping , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[40]  Cyrill Stachniss,et al.  SuMa++: Efficient LiDAR-based Semantic SLAM , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[41]  Ming Liu,et al.  Low-Cost GPS-Aided LiDAR State Estimation and Map Building , 2019, 2019 IEEE International Conference on Imaging Systems and Techniques (IST).

[42]  Weikun Zhen,et al.  Estimating the Localizability in Tunnel-like Environments using LiDAR and UWB , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[43]  Jianhao Jiao,et al.  MLOD: Awareness of Extrinsic Perturbation in Multi-LiDAR 3D Object Detection for Autonomous Driving , 2020, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[44]  Sebastian Thrun,et al.  Unsupervised Intrinsic Calibration of Depth Sensors via SLAM , 2013, Robotics: Science and Systems.

[45]  Michael Kaess,et al.  Long-range GPS-denied aerial inertial navigation with LIDAR localization , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[46]  Michael Kaess,et al.  Degeneracy-Aware Factors with Applications to Underwater SLAM , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[47]  Paul Newman,et al.  The Oxford Radar RobotCar Dataset: A Radar Extension to the Oxford RobotCar Dataset , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[48]  Guangming Xiong,et al.  CPFG-SLAM:a Robust Simultaneous Localization and Mapping based on LIDAR in Off-Road Environment , 2018, 2018 IEEE Intelligent Vehicles Symposium (IV).

[49]  Tai-Jiang Mu,et al.  Lidar-Monocular Visual Odometry using Point and Line Features , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[50]  Gaurav Pandey,et al.  Alignment of 3D point clouds with a dominant ground plane , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[51]  Brendan Englot,et al.  LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[52]  Cyrill Stachniss,et al.  Fast range image-based segmentation of sparse 3D laser scans for online operation , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[53]  Nathan Michael,et al.  Detection and prediction of near-term state estimation degradation via online nonlinear observability analysis , 2016, 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR).

[54]  Anastasios I. Mourikis,et al.  High-fidelity sensor modeling and self-calibration in vision-aided inertial navigation , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[55]  Roland Siegwart,et al.  Keyframe-Based Visual-Inertial SLAM using Nonlinear Optimization , 2013, Robotics: Science and Systems.

[56]  Zheng Fang,et al.  A Robust Laser-Inertial Odometry and Mapping Method for Large-Scale Highway Environments , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[57]  Paul Timothy Furgale,et al.  Associating Uncertainty With Three-Dimensional Poses for Use in Estimation Problems , 2014, IEEE Transactions on Robotics.

[58]  Ayoung Kim,et al.  On the uncertainty propagation: Why uncertainty on lie groups preserves monotonicity? , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[59]  Roland Siegwart,et al.  Comparing ICP variants on real-world data sets , 2013, Auton. Robots.

[60]  Yuxiang Sun,et al.  Hercules: An Autonomous Logistic Vehicle for Contact-less Goods Transportation During the COVID-19 Outbreak , 2020, ArXiv.

[61]  John R. Spletzer,et al.  On-line calibration of multiple LIDARs on a mobile vehicle platform , 2010, 2010 IEEE International Conference on Robotics and Automation.

[62]  Teresa A. Vidal-Calleja,et al.  3D Lidar-IMU Calibration Based on Upsampled Preintegrated Measurements for Motion Distortion Correction , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[63]  Ming Liu,et al.  Monocular Direct Sparse Localization in a Prior 3D Surfel Map , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[64]  Roland Siegwart,et al.  A robust and modular multi-sensor fusion approach applied to MAV navigation , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[65]  Giorgio Grisetti,et al.  NICP: Dense normal based point cloud registration , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[66]  Michael Bosse,et al.  Zebedee: Design of a Spring-Mounted 3-D Range Sensor with Application to Mobile Mapping , 2012, IEEE Transactions on Robotics.

[67]  R. Siegwart,et al.  Noise characterization of depth sensors for surface inspections , 2012, 2012 2nd International Conference on Applied Robotics for the Power Industry (CARPI).

[68]  Ji Zhang,et al.  Enabling aggressive motion estimation at low-drift and accurate mapping in real-time , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[69]  Radu Bogdan Rusu,et al.  3D is here: Point Cloud Library (PCL) , 2011, 2011 IEEE International Conference on Robotics and Automation.

[70]  Paul Newman,et al.  1 year, 1000 km: The Oxford RobotCar dataset , 2017, Int. J. Robotics Res..

[71]  Chiara Bartolozzi,et al.  Event-Based Vision: A Survey , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[72]  Jiarong Lin,et al.  Loam livox: A fast, robust, high-precision LiDAR odometry and mapping package for LiDARs of small FoV , 2019, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[73]  Yohannes Kassahun,et al.  A2D2: Audi Autonomous Driving Dataset , 2020, ArXiv.

[74]  Shaojie Shen,et al.  VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator , 2017, IEEE Transactions on Robotics.

[75]  Shaojie Shen,et al.  Self-calibrating multi-camera visual-inertial fusion for autonomous MAVs , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[76]  Martin Brossard,et al.  A New Approach to 3D ICP Covariance Estimation , 2020, IEEE Robotics and Automation Letters.

[77]  Marc Pollefeys,et al.  Self-calibration and visual SLAM with a multi-camera system on a micro aerial vehicle , 2014, Auton. Robots.

[78]  Yang Yu,et al.  A Novel Dual-Lidar Calibration Algorithm Using Planar Surfaces , 2019, 2019 IEEE Intelligent Vehicles Symposium (IV).

[79]  Ji Zhang,et al.  LOAM: Lidar Odometry and Mapping in Real-time , 2014, Robotics: Science and Systems.

[80]  Shichao Yang,et al.  CubeSLAM: Monocular 3-D Object SLAM , 2018, IEEE Transactions on Robotics.

[81]  Davide Scaramuzza,et al.  A Tutorial on Quantitative Trajectory Evaluation for Visual(-Inertial) Odometry , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[82]  Sridha Sridharan,et al.  Elasticity Meets Continuous-Time: Map-Centric Dense 3D LiDAR SLAM , 2020, IEEE Transactions on Robotics.

[83]  Andrew Howard,et al.  Design and use paradigms for Gazebo, an open-source multi-robot simulator , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[84]  François Pomerleau,et al.  CELLO-3D: Estimating the Covariance of ICP in the Real World , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[85]  Shaojie Shen,et al.  Monocular visual-inertial fusion with online initialization and camera-IMU calibration , 2015, 2015 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR).

[86]  Ji Zhang,et al.  On degeneracy of optimization-based state estimation problems , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[87]  Jörg Stückler,et al.  Local multi-resolution representation for 6D motion estimation and mapping with a continuously rotating 3D laser scanner , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[88]  Shaojie Shen,et al.  Online Temporal Calibration for Monocular Visual-Inertial Systems , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[89]  Alberto Elfes,et al.  Real-time autonomous ground vehicle navigation in heterogeneous environments using a 3D LiDAR , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).