The Exceptional Strong Face-centered Cubic Phase and Semi-coherent Phase Boundary in a Eutectic Dual-phase High Entropy Alloy AlCoCrFeNi

[1]  P. Hodgson,et al.  Understanding the mechanical behaviour and the large strength/ductility differences between FCC and BCC AlxCoCrFeNi high entropy alloys , 2017 .

[2]  B. Zhang,et al.  Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy , 2017 .

[3]  Ehsan Ghassemali,et al.  In-situ study of crack initiation and propagation in a dual phase AlCoCrFeNi high entropy alloy , 2017 .

[4]  Sheng Guo,et al.  Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range , 2017 .

[5]  D. Miracle,et al.  A critical review of high entropy alloys and related concepts , 2016 .

[6]  C. Tasan,et al.  Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off , 2016, Nature.

[7]  Sheng Guo,et al.  Ultrafine-Grained AlCoCrFeNi2.1 Eutectic High-Entropy Alloy , 2016 .

[8]  K. An,et al.  Phase-specific deformation behavior of a NiAl–Cr(Mo) lamellar composite under thermal and mechanical loads , 2016 .

[9]  Robert O. Ritchie,et al.  Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi , 2015, Nature Communications.

[10]  G. M. Stocks,et al.  Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys , 2015, Nature Communications.

[11]  R. Ritchie,et al.  A fracture-resistant high-entropy alloy for cryogenic applications , 2014, Science.

[12]  Huijun Kang,et al.  A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys , 2014, Scientific Reports.

[13]  J. Greer,et al.  Deformation response of ferrite and martensite in a dual-phase steel , 2014 .

[14]  U. Glatzel,et al.  Phase separation in equiatomic AlCoCrFeNi high-entropy alloy. , 2013, Ultramicroscopy.

[15]  J. Yeh,et al.  Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys , 2012 .

[16]  Martin E. Glicksman,et al.  Principles of Solidification: An Introduction to Modern Casting and Crystal Growth Concepts , 2010 .

[17]  R. Wu,et al.  REVIEWS ON THE INFLUENCES OF ALLOYING ELEMENTS ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Mg-Li BASE ALLOYS , 2010 .

[18]  K. Lu,et al.  Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale , 2009, Science.

[19]  Yuan-Sheng Huang,et al.  On the elemental effect of AlCoCrCuFeNi high-entropy alloy system , 2007 .

[20]  J. D. Embury,et al.  The Formation of Strain-induced Martensite in Stainless Steels , 2004 .

[21]  M. Oehring,et al.  Recent progress in the development of gamma titanium aluminide alloys , 2000 .

[22]  T. Gladman,et al.  Precipitation hardening in metals , 1999 .

[23]  R. Wagner,et al.  Microstructure and deformation of two-phase γ-titanium aluminides , 1998 .

[24]  I. Choudhury,et al.  Machinability of nickel-base super alloys: a general review , 1998 .

[25]  R. Priestner,et al.  Influence of ferrite-martensite microstructural morphology on tensile properties of dual-phase steel , 1996, Journal of Materials Science.

[26]  R. Wagner,et al.  Deformation processes related to interfacial boundaries in two-phase γ-titanium aluminides , 1993 .

[27]  D. Dimiduk,et al.  Deformation Mechanisms and Solid-Solution Strengthening in Ordered Alloys , 1990 .

[28]  Gareth Thomas,et al.  On the law of mixtures in dual-phase steels , 1980 .

[29]  E. L. Crossley A GENERAL REVIEW , 1954 .