On Linear Canonical Controllers Within The Unfalsified Control Framework

Abstract A canonical controller (cf. van der Schaft [2002]), which was proposed by van der Schaft, is a controller yielding a given specification with a plant behavior. In this paper, for a given data of a plant and a specification, we provide a synthesis of linear canonical controllers without using mathematical models of a plant. A desired canonical controller can be obtained by solving linear algebraic equations which consist of a data and a specification. We also see that a canonical controller designed by proposed method also unfalsifies the actual data and a specification, so our result is also regarded as one of synthesis of unfalsified controllers (cf. Safonov and Tsao [1997]).

[1]  C. Praagman Inputs, outputs and states in the representation of time series , 1988 .

[2]  Harry L. Trentelman,et al.  The canonical controllers and regular interconnection , 2005, Syst. Control. Lett..

[3]  Osamu Kaneko,et al.  A fictitious reference iterative tuning (FRIT) in the two-degree of freedom control scheme and its a , 2005 .

[4]  J. Willems,et al.  DATA DRIVEN SIMULATION WITH APPLICATIONS TO SYSTEM IDENTIFICATION , 2005 .

[5]  Jan C. Willems,et al.  From time series to linear system - Part I. Finite dimensional linear time invariant systems , 1986, Autom..

[6]  J. Willems On interconnections, control, and feedback , 1997, IEEE Trans. Autom. Control..

[7]  Arjan van der Schaft,et al.  Achievable behavior of general systems , 2003, Syst. Control. Lett..

[8]  Antonio Sala Integrating virtual reference feedback tuning into a unified closed-loop identification framework , 2007, Autom..

[9]  M. C. Campia,et al.  Virtual reference feedback tuning: a direct method for the design of feedback controllers , 2002 .

[10]  Takao Fujii,et al.  一回の閉ループ実験データを用いた最小二乗法に基づく制御器パラメータチューニング―Fictitious Reference Iterative Tuningの拡張;一回の閉ループ実験データを用いた最小二乗法に基づく制御器パラメータチューニング―Fictitious Reference Iterative Tuningの拡張;A New Parameter Tuning for Controllers Based on Least-Squares Method by using One-Shot Closed Loop Experimental Data-An Extension of Ficti , 2005 .

[11]  J. Willems Paradigms and puzzles in the theory of dynamical systems , 1991 .

[12]  Sabine Van Huffel,et al.  Exact and Approximate Modeling of Linear Systems: A Behavioral Approach (Mathematical Modeling and Computation) (Mathematical Modeling and Computation) , 2006 .

[13]  Michael G. Safonov,et al.  The unfalsified control concept and learning , 1997 .

[14]  Yasumasa Fujisaki,et al.  System Representation and Optimal Control in Input-Output Data Space , 2004 .

[15]  Jenq-Tzong H. Chan Data-based synthesis of a multivariable linear-quadratic regulator , 1996, Autom..

[16]  Katsuhisa Furuta,et al.  Discrete-time LQG dynamic controller design using plant Markov parameters , 1995, Autom..

[17]  Paolo Rapisarda,et al.  On the linear quadratic data-driven control , 2007, 2007 European Control Conference (ECC).

[18]  Svante Gunnarsson,et al.  Iterative feedback tuning: theory and applications , 1998 .

[19]  Jan C. Willems,et al.  Introduction to mathematical systems theory: a behavioral approach, Texts in Applied Mathematics 26 , 1999 .

[20]  Yoshiaki Kawamura Direct construction of LQ regulator based on orthogonalization of signals: dynamical output feedback , 1998 .

[21]  Naoki Hayashi,et al.  A model-less algorithm for tracking control based on input-output data , 2001 .

[22]  S. Yamamoto,et al.  Direct Controller Tuning Based on Data Matching , 2006, 2006 SICE-ICASE International Joint Conference.

[23]  Osamu Kaneko,et al.  A new method of controller parameter tuning based on input-output data – Fictitious Reference Iterative Tuning (FRIT) – , 2004 .

[24]  Harry L. Trentelman,et al.  Stabilization, pole placement, and regular implementability , 2002, IEEE Trans. Autom. Control..

[25]  Masao Ikeda,et al.  SYSTEM REPRESENTATION AND OPTIMAL TRACKING IN DATA SPACE , 2005 .

[26]  Bart De Moor,et al.  A note on persistency of excitation , 2005, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[27]  J. Willems,et al.  State Maps for Linear Systems , 1997 .

[28]  Sergio M. Savaresi,et al.  Virtual reference feedback tuning: a direct method for the design of feedback controllers , 2002, Autom..