Some critical issues in the characterization of nanoscale thermal conductivity by molecular dynamics analysis

The nanoscale thermal conductivity of a material can be significantly different from its value at the macroscale. Although a number of studies using the equilibrium molecular dynamics (EMD) with Green–Kubo (GK) formula have been conducted for nano-conductivity predictions, there are many problems in the analysis that have made the EMD results unreliable or misleading. This paper aims to clarify such critical issues through a thorough investigation on the effect and determination of the vital physical variables in the EMD-GK analysis, using the prediction of the nanoscale thermal conductivity of Si as an example. The study concluded that to have a reliable prediction, quantum correction, time step, simulation time, correlation time and system size are all crucial.

[1]  Laura de Sousa Oliveira,et al.  Method to manage integration error in the Green-Kubo method. , 2017, Physical Review E.

[2]  Jinghai Li,et al.  Molecular dynamics simulation overcoming the finite size effects of thermal conductivity of bulk silicon and silicon nanowires , 2016 .

[3]  M. Dresselhaus,et al.  Spectral mapping of thermal conductivity through nanoscale ballistic transport. , 2015, Nature nanotechnology.

[4]  Z. Gang Nanoscale Energy Transport and Harvesting: A Computational Study , 2015 .

[5]  I. Lee,et al.  Lattice thermal conductivity of crystalline and amorphous silicon with and without isotopic effects from the ballistic to diffusive thermal transport regime , 2014 .

[6]  Weidong Liu,et al.  Some critical issues for a reliable molecular dynamics simulation of nano-machining , 2014 .

[7]  Gang Chen,et al.  Nanoscale heat transfer--from computation to experiment. , 2013, Physical chemistry chemical physics : PCCP.

[8]  P C Howell,et al.  Comparison of molecular dynamics methods and interatomic potentials for calculating the thermal conductivity of silicon. , 2012, The Journal of chemical physics.

[9]  R. Jones,et al.  Adaptive Green-Kubo estimates of transport coefficients from molecular dynamics based on robust error analysis. , 2012, The Journal of chemical physics.

[10]  R. Jones,et al.  Effects of cutoff functions of Tersoff potentials on molecular dynamics simulations of thermal transport , 2011, 1206.5450.

[11]  J. Heath,et al.  Reduction of thermal conductivity in phononic nanomesh structures. , 2010, Nature nanotechnology.

[12]  Kurt Maute,et al.  Strain effects on the thermal conductivity of nanostructures , 2010 .

[13]  Gang Zhang,et al.  How to improve the accuracy of equilibrium molecular dynamics for computation of thermal conductivity , 2010, 1005.4478.

[14]  V. Tomar,et al.  The role of interface thermal boundary resistance in the overall thermal conductivity of Si–Ge multilayered structures , 2009, Nanotechnology.

[15]  R. Mahajan,et al.  On-chip cooling by superlattice-based thin-film thermoelectrics. , 2009, Nature nanotechnology.

[16]  A. McGaughey,et al.  Predicting phonon properties and thermal conductivity from anharmonic lattice dynamics calculations and molecular dynamics simulations , 2009 .

[17]  Taku Ohara,et al.  Thermal conductivity of silicon nanowire by nonequilibrium molecular dynamics simulations , 2009 .

[18]  K. Mylvaganam,et al.  Scale Effect of Nano-Indentation of Silicon – A Molecular Dynamics Investigation , 2008 .

[19]  Gang Chen,et al.  Modeling the Thermal Conductivity and Phonon Transport in Nanoparticle Composites Using Monte Carlo Simulation , 2008 .

[20]  D. Rochais,et al.  Thermal contact resistance between two nanoparticles , 2008, 0806.1609.

[21]  Gang Chen,et al.  Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics , 2008 .

[22]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[23]  L. Zhigilei,et al.  Effects of temperature and disorder on thermal boundary conductance at solid-solid interfaces: Nonequilibrium molecular dynamics simulations , 2007 .

[24]  Ju Li,et al.  Dynamical thermal conductivity of argon crystal , 2007 .

[25]  Frank Ko,et al.  Application of Nanofiber Technology to Nonwoven Thermal Insulation , 2007 .

[26]  K. Maize,et al.  Microscale and Nanoscale Thermal Characterization Techniques , 2007, 2007 International Conference on Thermal Issues in Emerging Technologies: Theory and Application.

[27]  Krisztian Kordas,et al.  Chip cooling with integrated carbon nanotube microfin architectures , 2007 .

[28]  Ronggui Yang,et al.  Thermal conductivity modeling of compacted nanowire composites , 2007 .

[29]  J. Murthy,et al.  Domain size effects in molecular dynamics simulation of phonon transport in silicon , 2006 .

[30]  C. Weng,et al.  An investigation into the structural features and thermal conductivity of silicon nanoparticles using molecular dynamics simulations , 2006 .

[31]  Gang Chen Nanoscale energy transport and conversion : a parallel treatment of electrons, molecules, phonons, and photons , 2005 .

[32]  David G. Cahill,et al.  Thermal conductivity of isotopically pure and Ge-doped Si epitaxial layers from 300 to 550 K , 2004 .

[33]  R. Kremer,et al.  Thermal conductivity of isotopically enriched 28Si: revisited , 2004, cond-mat/0407060.

[34]  A. McGaughey,et al.  Thermal conductivity decomposition and analysis using molecular dynamics simulations. Part I. Lennard-Jones argon , 2004 .

[35]  Natalio Mingo,et al.  Phonon transport in nanowires coated with an amorphous material: An atomistic Green’s function approach , 2003 .

[36]  O. Madelung Semiconductors: Data Handbook , 2003 .

[37]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[38]  S. Phillpot,et al.  Comparison of atomic-level simulation methods for computing thermal conductivity , 2002 .

[39]  William A. Goddard,et al.  Thermal conductivity of diamond and related materials from molecular dynamics simulations , 2000 .

[40]  R. W. Henn,et al.  Thermal conductivity of isotopically enriched silicon , 2000 .

[41]  W. Goddard,et al.  Thermal conductivity of carbon nanotubes , 2000 .

[42]  Sebastian Volz,et al.  Molecular-dynamics simulation of thermal conductivity of silicon crystals , 2000 .

[43]  Sebastian Volz,et al.  Molecular dynamics simulation of thermal conductivity of silicon nanowires , 1999 .

[44]  P. D. P. Taylor,et al.  Isotopic compositions of the elements 1997 (Technical Report) , 1998 .

[45]  I. Silier,et al.  Thermal conductivity of isotopically enriched Si , 1997 .

[46]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[47]  G. A. Slack,et al.  Thermal Conductivity of Silicon and Germanium from 3°K to the Melting Point , 1964 .

[48]  R. Zwanzig Elementary Derivation of Time‐Correlation Formulas for Transport Coefficients , 1964 .

[49]  T. Geballe,et al.  Isotopic and Other Types of Thermal Resistance in Germanium , 1958 .

[50]  Lars Stixrude,et al.  Theoretical Methods for Calculating the Lattice Thermal Conductivity of Minerals , 2010 .

[51]  Sebastian Volz,et al.  Thermal nanosystems and nanomaterials , 2009 .

[52]  Gary P. Morriss,et al.  Statistical Mechanics of Nonequilbrium Liquids , 2007 .

[53]  Sebastian Volz,et al.  Microscale and nanoscale heat transfer , 2006 .

[54]  Yunfei Chen,et al.  THERMAL EXPANSION AND ISOTOPIC COMPOSITION EFFECTS ON LATTICE THERMAL CONDUCTIVITIES OF CRYSTALLINE SILICON , 2006 .