Operator growth and black hole formation

When two particles collide in an asymptotically AdS spacetime with high enough energy and small enough impact parameter, they can form a black hole. Motivated by dual quantum circuit considerations, we propose a threshold condition for black hole formation. Intuitively the condition can be understood as the onset of overlap of the butterfly cones describing the ballistic spread of the effect of the perturbations on the boundary systems. We verify the correctness of the condition in three bulk dimensions. We describe a six-point correlation function that can diagnose this condition and compute it in two-dimensional CFTs using eikonal resummation.

[1]  Felix M. Haehl,et al.  Effective description of sub-maximal chaos: stringy effects for SYK scrambling , 2023, Journal of High Energy Physics.

[2]  Ying Zhao,et al.  Collisions of localized shocks and quantum circuits , 2022, Journal of High Energy Physics.

[3]  Pengfei Zhang,et al.  A two-way approach to out-of-time-order correlators , 2021, Journal of High Energy Physics.

[4]  Hong Liu,et al.  Causal connectability between quantum systems and the black hole interior in holographic duality , 2021, 2110.05497.

[5]  Arjun Kar,et al.  Random matrix theory for complexity growth and black hole interiors , 2021, Journal of High Energy Physics.

[6]  Ying Zhao,et al.  Six-point functions and collisions in the black hole interior , 2021, Journal of High Energy Physics.

[7]  Ying Zhao,et al.  Diagnosing collisions in the interior of a wormhole , 2021, 2104.02736.

[8]  Ying Zhao,et al.  Size and momentum of an infalling particle in the black hole interior , 2021, Journal of High Energy Physics.

[9]  K. Nguyen Reparametrization modes in 2d CFT and the effective theory of stress tensor exchanges , 2021, Journal of High Energy Physics.

[10]  Ying Zhao Collision in the interior of wormhole , 2020, Journal of High Energy Physics.

[11]  D. Jafferis,et al.  Inside the hologram: reconstructing the bulk observer’s experience , 2020, Journal of High Energy Physics.

[12]  E. Rabinovici,et al.  Operator complexity: a journey to the edge of Krylov space , 2020, Journal of High Energy Physics.

[13]  S. Hoback,et al.  Towards Feynman rules for conformal blocks , 2020, Journal of High Energy Physics.

[14]  Felix M. Haehl,et al.  On the Virasoro six-point identity block and chaos , 2020, Journal of High Energy Physics.

[15]  J. Fortin,et al.  Six-point conformal blocks in the snowflake channel , 2020, Journal of High Energy Physics.

[16]  Gregory D. Kahanamoku-Meyer,et al.  Many-Body Chaos in the Sachdev-Ye-Kitaev Model. , 2020, Physical review letters.

[17]  J. Simón,et al.  On operator growth and emergent Poincaré symmetries , 2020, 2002.03865.

[18]  G'abor S'arosi,et al.  Chaos in the butterfly cone , 2019, Journal of High Energy Physics.

[19]  J. Cirac,et al.  Quantum chaos in the Brownian SYK model with large finite N : OTOCs and tripartite information , 2019, Journal of High Energy Physics.

[20]  E. Rabinovici,et al.  On the evolution of operator complexity beyond scrambling , 2019, Journal of High Energy Physics.

[21]  C. Jepsen,et al.  Propagator identities, holographic conformal blocks, and higher-point AdS diagrams , 2019, Journal of High Energy Physics.

[22]  J. Sonner,et al.  Phases of scrambling in eigenstates , 2019, SciPost Physics.

[23]  E. Altman,et al.  A Universal Operator Growth Hypothesis , 2018, Physical Review X.

[24]  X. Qi,et al.  Quantum epidemiology: operator growth, thermal effects, and SYK , 2018, Journal of High Energy Physics.

[25]  Y. Nomura Reanalyzing an evaporating black hole , 2018, Physical Review D.

[26]  Jordan S. Cotler,et al.  A theory of reparameterizations for AdS3 gravity , 2018, Journal of High Energy Physics.

[27]  M. Rozali,et al.  Effective field theory for chaotic CFTs , 2018, Journal of High Energy Physics.

[28]  Javier M. Magán Black holes, complexity and quantum chaos , 2018, Journal of High Energy Physics.

[29]  Daniel A. Roberts,et al.  Operator growth in the SYK model , 2018, Journal of High Energy Physics.

[30]  L. Susskind Why do Things Fall , 2018, 1802.01198.

[31]  V. Balasubramanian,et al.  Echoes of chaos from string theory black holes , 2016, Journal of High Energy Physics.

[32]  X. Qi,et al.  Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models , 2016, 1609.07832.

[33]  J. Maldacena,et al.  Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space , 2016, 1606.01857.

[34]  S. Sachdev,et al.  Numerical study of fermion and boson models with infinite-range random interactions , 2016, 1603.05246.

[35]  Thomas Hartman,et al.  Black hole collapse in the 1/c expansion , 2016, 1603.04856.

[36]  S. Shenker,et al.  Stringy effects in scrambling , 2014, 1412.6087.

[37]  Daniel A. Roberts,et al.  Two-dimensional conformal field theory and the butterfly effect , 2014, 1412.5123.

[38]  Leonard Susskind,et al.  Entanglement is not enough , 2014, 1411.0690.

[39]  Daniel A. Roberts,et al.  Localized shocks , 2014, 1409.8180.

[40]  L. Susskind,et al.  Switchbacks and the Bridge to Nowhere , 2014, 1408.2823.

[41]  L. Susskind,et al.  Complexity and Shock Wave Geometries , 2014, 1406.2678.

[42]  J. Maldacena,et al.  Time evolution of entanglement entropy from black hole interiors , 2013, 1303.1080.

[43]  J. Maldacena Eternal black holes in anti-de Sitter , 2001, hep-th/0106112.

[44]  V. Balasubramanian,et al.  Supersymmetric Conical Defects: Towards a string theoretic description of black hole formation , 2000, hep-th/0011217.

[45]  S. Holst,et al.  THE ANTI-DE SITTER GOTT UNIVERSE : A ROTATING BTZ WORMHOLE , 1999, gr-qc/9905030.

[46]  H. Matschull Black hole creation in 2 + 1 dimensions , 1998, gr-qc/9809087.

[47]  E. Witten Anti-de Sitter space and holography , 1998, hep-th/9802150.

[48]  A. Polyakov,et al.  Gauge Theory Correlators from Non-Critical String Theory , 1998, hep-th/9802109.

[49]  J. Maldacena The Large-N Limit of Superconformal Field Theories and Supergravity , 1997, hep-th/9711200.

[50]  J. Gott,et al.  Closed timelike curves produced by pairs of moving cosmic strings: Exact solutions. , 1991, Physical review letters.

[51]  A. Alekseev,et al.  Path integral quantization of the coadjoint orbits of the virasoro group and 2-d gravity , 1989 .

[52]  E. Witten Coadjoint orbits of the Virasoro group , 1988 .