Relating the Type of Ambiguity of Finite Automata to the Succinctness of Their Representation

We consider the problem of how the size of a nondeterministic finite automaton (nfa) representing a regular language depends on the degree of ambiguity of the nfa. We obtain results for the unary and bounded inputs, and partial results for the unrestricted inputs. One of the main results of this paper shows that for unrestricted inputs, deterministic, unambiguous and nondeterministic machines form a hierarchy with respect to the number of states, solving an open problem of Stearns and Hunt. We also propose a new approach to the study of the succinctness of representation through regularity preserving closure properties and obtain some results in this direction.

[1]  Michael Sipser,et al.  Halting space-bounded computations , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[2]  F. W. Roush,et al.  Automata on one symbol , 1983 .

[3]  Werner Kuich,et al.  On the Entropy of Context-Free Languages , 1970, Inf. Control..

[4]  FRANK R. MOORE,et al.  On the Bounds for State-Set Size in the Proofs of Equivalence Between Deterministic, Nondeterministic, and Two-Way Finite Automata , 1971, IEEE Transactions on Computers.

[5]  A. R. Meyer,et al.  Economy of Description by Automata, Grammars, and Formal Systems , 1971, SWAT.

[6]  Michael Sipser,et al.  Lower bounds on the size of sweeping automata , 1979, J. Comput. Syst. Sci..

[7]  E. M. Schmidt Succinctness of Descriptions of Context-Free, Regular and Finite Languages , 1977 .

[8]  A. L. Whiteman Review: Ivan Niven and Herbert S. Zuckerman, An introduction to the theory of numbers , 1961 .

[9]  Thomas Sudkamp,et al.  Languages and Machines , 1988 .

[10]  William J. Sakoda,et al.  Nondeterminism and the size of two way finite automata , 1978, STOC.

[11]  Oscar H. Ibarra,et al.  On Sparseness, Ambiguity and other Decision Problems for Acceptors and Transducers , 1986, STACS.

[12]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[13]  Helmut Seidl,et al.  On the Degree of Ambiguity of Finite Automata , 1986, MFCS.

[14]  Wolfgang J. Paul,et al.  Kolmogorov complexity and lower bounds , 1979, FCT.

[15]  Marek Chrobak,et al.  Finite Automata and Unary Languages , 1986, Theor. Comput. Sci..

[16]  Oscar H. Ibarra,et al.  On the Finite-Valuedness Problem for Sequential Machines , 1983, Theor. Comput. Sci..

[17]  Dana S. Scott,et al.  Finite Automata and Their Decision Problems , 1959, IBM J. Res. Dev..

[18]  Andrzej Ehrenfeucht,et al.  Complexity Measures for Regular Expressions , 1976, J. Comput. Syst. Sci..

[19]  Piotr Berman A Note on Sweeping Automata , 1980, ICALP.

[20]  Detlef Wotschke,et al.  Amounts of nondeterminism in finite automata , 1980, Acta Informatica.

[21]  Detlef Wotschke,et al.  Concurrent Conciseness of Degree, Probabilistic, Nondeterministic and Deterministic Finite Automata (Extended Abstract) , 1986, STACS.

[22]  Harry B. Hunt,et al.  On the Equivalence and Containment Problems for Unambiguous Regular Expressions, Regular Grammars and Finite Automata , 1985, SIAM J. Comput..