Solving Two Dimensional H(curl)-elliptic Interface Systems with Optimal Convergence On Unfitted Meshes

In this article, we develop and analyze a finite element method with the first family Nedelec elements of the lowest degree for solving a Maxwell interface problem modeled by a $\mathbf{H}(\text{curl})$-elliptic equation on unfitted meshes. To capture the jump conditions optimally, we construct and use $\mathbf{H}(\text{curl})$ immersed finite element (IFE) functions on interface elements while keep using the standard Nedelec functions on all the non-interface elements. We establish a few important properties for the IFE functions including the unisolvence according to the edge degrees of freedom, the exact sequence relating to the $H^1$ IFE functions and the optimal approximation capabilities. In order to achieve the optimal convergence rates, we employ a Petrov-Galerkin method in which the IFE functions are only used as the trial functions and the standard Nedelec functions are used as the test functions which can eliminate the non-conformity errors. We analyze the inf-sup conditions under certain conditions and show the optimal convergence rates which are also validated by numerical experiments.

[1]  Zhiming Chen,et al.  The adaptive immersed interface finite element method for elliptic and Maxwell interface problems , 2009, J. Comput. Phys..

[2]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[3]  I. Babuska,et al.  Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods , 1983 .

[4]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[5]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[6]  Jun Zou,et al.  Uniform a priori estimates for elliptic and static Maxwell interface problems , 2006 .

[7]  A. Aziz The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations , 1972 .

[8]  Jun Zou,et al.  Fully discrete finite element approaches for time-dependent Maxwell's equations , 1999, Numerische Mathematik.

[9]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[10]  Z. Cai,et al.  A recovery-based a posteriori error estimator for H(curl) interface problems , 2015, 1504.00898.

[11]  Zhilin Li,et al.  An immersed finite element space and its approximation capability , 2004 .

[12]  Ivan G. Graham,et al.  A new multiscale finite element method for high-contrast elliptic interface problems , 2010, Math. Comput..

[13]  Zhiming Chen,et al.  Detection and classification from electromagnetic induction data , 2013, J. Comput. Phys..

[14]  J. Hesthaven,et al.  On the constants in hp-finite element trace inverse inequalities , 2003 .

[15]  M. Costabel,et al.  Singularities of Maxwell interface problems , 1999 .

[16]  Slimane Adjerid,et al.  An Enriched Immersed Finite Element Method for Interface Problems with Nonhomogeneous Jump Conditions , 2020, Computer Methods in Applied Mechanics and Engineering.

[17]  T. Lin,et al.  Error estimates for a partially penalized immersed finite element method for elasticity interface problems , 2020 .

[18]  Peter Hansbo,et al.  A Lagrange multiplier method for the finite element solution of elliptic interface problems using non-matching meshes , 2005, Numerische Mathematik.

[19]  Jens Markus Melenk,et al.  Optimal a priori estimates for higher order finite elements for elliptic interface problems , 2010 .

[20]  H. K. Dirks,et al.  Quasi-stationary fields for microelectronic applications , 1996 .

[21]  Hölder regularity for Maxwell’s equations under minimal assumptions on the coefficients , 2016, 1604.03741.

[22]  N. J.,et al.  A HIGHER DEGREE IMMERSED FINITE ELEMENT METHOD BASED ON A CAUCHY EXTENSION FOR ELLIPTIC INTERFACE PROBLEMS\ast , 2019 .

[23]  D. Arnold Differential complexes and stability of finite element methods. I. The de Rham complex , 2006 .

[24]  R. Hiptmair,et al.  Discrete regular decompositions of tetrahedral discrete 1-forms: Discrete regular decompositions of tetrahedral discrete 1-forms , 2019 .

[25]  Bo Li,et al.  Immersed-Interface Finite-Element Methods for Elliptic Interface Problems with Nonhomogeneous Jump Conditions , 2007, SIAM J. Numer. Anal..

[26]  Habib Ammari,et al.  A Justification of Eddy Currents Model for the Maxwell Equations , 2000, SIAM J. Appl. Math..

[27]  Weiying Zheng,et al.  An Adaptive FEM for a Maxwell Interface Problem , 2016, J. Sci. Comput..

[28]  Jinchao Xu,et al.  Robust Preconditioner for H(curl) Interface Problems , 2011 .

[29]  Peter Hansbo,et al.  CutFEM: Discretizing geometry and partial differential equations , 2015 .

[30]  Ralf Hiptmair,et al.  Auxiliary space preconditioning in H0(curl; Ω) , 2006, Numerische Mathematik.

[31]  Peng Song,et al.  A weak formulation for solving elliptic interface problems without body fitted grid , 2013, J. Comput. Phys..

[32]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[33]  Shan Zhao,et al.  High-order FDTD methods via derivative matching for Maxwell's equations with material interfaces , 2004 .

[34]  Weiying Zheng,et al.  A Delta-Regularization Finite Element Method for a Double Curl Problem with Divergence-Free Constraint , 2012, SIAM J. Numer. Anal..

[35]  T. Hou,et al.  Removing the Cell Resonance Error in the Multiscale Finite Element Method via a Petrov-Galerkin Formulation , 2004 .

[36]  R. Hiptmair,et al.  An a priori error estimate for interior penalty discretizations of the Curl-Curl operator on non-conforming meshes , 2016 .

[37]  Weiying Zheng,et al.  Interface-penalty finite element methods for interface problems in H1, H(curl), and H(div) , 2020 .

[38]  Ralf Hiptmair,et al.  Convergence analysis of finite element methods for H(curl; Ω)-elliptic interface problems , 2012, Numerische Mathematik.

[39]  Tao Lin,et al.  Partially Penalized Immersed Finite Element Methods For Elliptic Interface Problems , 2015, SIAM J. Numer. Anal..

[40]  R. Hiptmair,et al.  A Review of Regular Decompositions of Vector Fields: Continuous, Discrete, and Structure-Preserving , 2020 .

[41]  R. Hoppe,et al.  Residual based a posteriori error estimators for eddy current computation , 2000 .

[42]  John E. Osborn,et al.  Can a finite element method perform arbitrarily badly? , 2000, Math. Comput..

[43]  Zhiming Chen,et al.  Finite Element Methods with Matching and Nonmatching Meshes for Maxwell Equations with Discontinuous Coefficients , 2000, SIAM J. Numer. Anal..

[44]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[45]  Xiaoming He,et al.  Three‐dimensional immersed finite‐element method for anisotropic magnetostatic/electrostatic interface problems with nonhomogeneous flux jump , 2020, International Journal for Numerical Methods in Engineering.

[46]  R. Hiptmair,et al.  DG Treatment of Non-conforming Interfaces in 3D Curl-Curl Problems , 2016 .

[47]  Ruchi Guo,et al.  A group of immersed finite-element spaces for elliptic interface problems , 2016, 1612.00919.