Simultaneous 68Ga-DOTATOC PET/MRI in Patients With Gastroenteropancreatic Neuroendocrine Tumors: Initial Results
暂无分享,去创建一个
Hilmar Kuehl | Andreas Bockisch | Thomas C Lauenstein | C. Buchbender | T. Poeppel | A. Bockisch | H. Kuehl | K. Beiderwellen | T. Lauenstein | Christian Buchbender | Thorsten D Poeppel | Karsten J Beiderwellen | Verena Hartung-Knemeyer | V. Hartung-Knemeyer
[1] J. Walecki,et al. The clinical value of MRI using single-shot echoplanar DWI to identify liver involvement in patients with advanced gastroenteropancreatic-neuroendocrine tumors (GEP-NETs), compared to FSE T2 and FFE T1 weighted image after i.v. Gd-EOB-DTPA contrast enhancement , 2012, Medical science monitor : international medical journal of experimental and clinical research.
[2] I. Burger,et al. PET/MR imaging of bone lesions – implications for PET quantification from imperfect attenuation correction , 2012, European Journal of Nuclear Medicine and Molecular Imaging.
[3] A. Campus. Role of ~(68)Ga-DOTATOC PET-CT in the diagnosis and staging of pancreatic neuroendocrine tumours , 2012 .
[4] J. Ruf. Cost comparison of 111In-DTPA-octreotide scintigraphy and 68Ga-DOTATOC PET/CT in Germany: two sides of two different coins , 2012, European Journal of Nuclear Medicine and Molecular Imaging.
[5] I. Steffen,et al. Evaluation of the potential of PET-MRI fusion for detection of liver metastases in patients with neuroendocrine tumours , 2012, European Radiology.
[6] C. Boy,et al. 68Ga-DOTATOC Versus 68Ga-DOTATATE PET/CT in Functional Imaging of Neuroendocrine Tumors , 2011, The Journal of Nuclear Medicine.
[7] Young Kon Kim,et al. Detection of Small Hepatocellular Carcinoma: Intraindividual Comparison of Gadoxetic Acid-Enhanced MRI at 3.0 and 1.5 T , 2011, Investigative radiology.
[8] U. Motosugi,et al. Distinguishing Hepatic Metastasis From Hemangioma Using Gadoxetic Acid-Enhanced Magnetic Resonance Imaging , 2011, Investigative radiology.
[9] H. Amthauer,et al. 68Ga-DOTATOC PET/CT of Neuroendocrine Tumors: Spotlight on the CT Phases of a Triple-Phase Protocol , 2011, The Journal of Nuclear Medicine.
[10] C. Boy,et al. 68Ga-DOTATOC PET/CT and somatostatin receptor (sst1–sst5) expression in normal human tissue: correlation of sst2 mRNA and SUVmax , 2011, European Journal of Nuclear Medicine and Molecular Imaging.
[11] J. Hornegger,et al. Anatomische Genauigkeit der retrospektiven, automatischen und starren Bildregistrierung zwischen FDG-PET und MRI bei abdominalen Läsionen , 2011 .
[12] J Hornegger,et al. Anatomical accuracy of abdominal lesion localization. Retrospective automatic rigid image registration between FDG-PET and MRI. , 2011, Nuklearmedizin. Nuclear medicine.
[13] R. Buchert,et al. Cost comparison of 111In-DTPA-octreotide scintigraphy and 68Ga-DOTATOC PET/CT for staging enteropancreatic neuroendocrine tumours , 2011, European Journal of Nuclear Medicine and Molecular Imaging.
[14] G. V. von Schulthess,et al. Value of Retrospective Fusion of PET and MR Images in Detection of Hepatic Metastases: Comparison with 18F-FDG PET/CT and Gd-EOB-DTPA–Enhanced MRI , 2010, Journal of Nuclear Medicine.
[15] Marion de Jong,et al. Somatostatin-receptor-based imaging and therapy of gastroenteropancreatic neuroendocrine tumors. , 2010, Endocrine-related cancer.
[16] B. Marinček,et al. 18F-FDG-PET und MRT bei Patienten mit malignen Leber- und Pankreasläsionen – Genauigkeit der retrospektiven PET/MRI-Registrierung durch Verwendung der CT-Komponente der PET/CT , 2010 .
[17] G. V. von Schulthess,et al. 18F-FDG-PET and MRI in patients with malignancies of the liver and pancreas , 2010, Nuklearmedizin.
[18] H. Amthauer,et al. Impact of Multiphase 68Ga-DOTATOC-PET/CT on Therapy Management in Patients with Neuroendocrine Tumors , 2009, Neuroendocrinology.
[19] R. Bale,et al. Bone Metastases in Patients with Neuroendocrine Tumor: 68Ga-DOTA-Tyr3-Octreotide PET in Comparison to CT and Bone Scintigraphy , 2009, Journal of Nuclear Medicine.
[20] Nassir Navab,et al. Tissue Classification as a Potential Approach for Attenuation Correction in Whole-Body PET/MRI: Evaluation with PET/CT Data , 2009, Journal of Nuclear Medicine.
[21] B. Schölkopf,et al. Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques , 2009, European Journal of Nuclear Medicine and Molecular Imaging.
[22] I. Drozdov,et al. Neuroendocrine tumor epidemiology , 2008, Cancer.
[23] J. Reubi,et al. Peptide-Based Probes for Cancer Imaging , 2008, Journal of Nuclear Medicine.
[24] R. Jensen,et al. Gastroenteropancreatic neuroendocrine tumours. , 2008, The Lancet. Oncology.
[25] Markus Jahn,et al. Processing of Generator-Produced 68Ga for Medical Application , 2007, Journal of Nuclear Medicine.
[26] A. Runz,et al. Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours , 2007, European Journal of Nuclear Medicine and Molecular Imaging.
[27] R. Felix,et al. Impact of FDG-PET/MRI Image Fusion on the Detection of Pancreatic Cancer , 2007, Pancreatology.
[28] T. de Baère,et al. Detection of liver metastases from endocrine tumors: a prospective comparison of somatostatin receptor scintigraphy, computed tomography, and magnetic resonance imaging. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.
[29] S. Bloom,et al. Neuroendocrine tumours. , 2014, Endocrine-related cancer.
[30] J. Debatin,et al. Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. , 2003, JAMA.
[31] J. R. Landis,et al. The measurement of observer agreement for categorical data. , 1977, Biometrics.