Structural basis for the clamping and Ca2+ activation of SNARE-mediated fusion by synaptotagmin

Synapotagmin-1 (Syt1) interacts with both SNARE proteins and lipid membranes to synchronize neurotransmitter release to calcium (Ca2+) influx. Here we report the cryo-electron microscopy structure of the Syt1–SNARE complex on anionic-lipid containing membranes. Under resting conditions, the Syt1 C2 domains bind the membrane with a magnesium (Mg2+)-mediated partial insertion of the aliphatic loops, alongside weak interactions with the anionic lipid headgroups. The C2B domain concurrently interacts the SNARE bundle via the ‘primary’ interface and is positioned between the SNAREpins and the membrane. In this configuration, Syt1 is projected to sterically delay the complete assembly of the associated SNAREpins and thus, contribute to clamping fusion. This Syt1–SNARE organization is disrupted upon Ca2+-influx as Syt1 reorients into the membrane, likely displacing the attached SNAREpins and reversing the fusion clamp. We thus conclude that the cation (Mg2+/Ca2+) dependent membrane interaction is a key determinant of the dual clamp/activator function of Synaptotagmin-1.The neuronal Ca2+-sensor Synapotagmin-1 (Syt1) interacts with SNARE proteins and lipid membranes and synchronizes neurotransmitter release in response to Ca2+-influx. Here the authors provide insights into the underlying molecular mechanism by determining the cryo-EM structure of the Syt1–SNARE complex on a lipid membrane at 10 Å resolution.

[1]  J. Rothman,et al.  Synaptotagmin oligomers are necessary and can be sufficient to form a Ca2+‐sensitive fusion clamp , 2019, FEBS letters.

[2]  J. Rothman,et al.  Symmetrical organization of proteins under docked synaptic vesicles , 2019, FEBS letters.

[3]  K. Volynski,et al.  Synergistic control of neurotransmitter release by different members of the synaptotagmin family , 2018, Current Opinion in Neurobiology.

[4]  A. Brunger,et al.  Ca2+-Triggered Synaptic Vesicle Fusion Initiated by Release of Inhibition. , 2018, Trends in cell biology.

[5]  J. Rothman,et al.  Synaptotagmin oligomerization is essential for calcium control of regulated exocytosis , 2018, Proceedings of the National Academy of Sciences.

[6]  J. Rizo Mechanism of neurotransmitter release coming into focus , 2018, Protein science : a publication of the Protein Society.

[7]  E. Chapman A Ca2+ Sensor for Exocytosis , 2018, Trends in Neurosciences.

[8]  A. Brunger,et al.  Molecular Mechanisms of Fast Neurotransmitter Release. , 2018, Annual review of biophysics.

[9]  J. Rothman,et al.  Rearrangements under confinement lead to increased binding energy of Synaptotagmin‐1 with anionic membranes in Mg2+ and Ca2+ , 2018, FEBS letters.

[10]  J. Rothman,et al.  Hypothesis – buttressed rings assemble, clamp, and release SNAREpins for synaptic transmission , 2017, FEBS letters.

[11]  J. Rothman,et al.  Circular oligomerization is an intrinsic property of synaptotagmin , 2017, eLife.

[12]  T. Südhof,et al.  The primed SNARE–complexin–synaptotagmin complex for neuronal exocytosis , 2017, Nature.

[13]  W. Baumeister,et al.  Morphologies of synaptic protein membrane fusion interfaces , 2017, Proceedings of the National Academy of Sciences.

[14]  Sjors H.W. Scheres,et al.  Helical reconstruction in RELION , 2016, bioRxiv.

[15]  Gretchen A. Stevens,et al.  A century of trends in adult human height , 2016, eLife.

[16]  J. Rothman,et al.  Ring-like oligomers of Synaptotagmins and related C2 domain proteins , 2016, eLife.

[17]  Cong Ma,et al.  Synaptotagmin-1 C2B domain interacts simultaneously with SNAREs and membranes to promote membrane fusion , 2016, eLife.

[18]  Q. Cui,et al.  Different states of synaptotagmin regulate evoked versus spontaneous release , 2016, Nature Communications.

[19]  R B Sutton,et al.  Functional analysis of the interface between the tandem C2 domains of synaptotagmin-1 , 2016, Molecular biology of the cell.

[20]  P. Dayan,et al.  A mathematical model explains saturating axon guidance responses to molecular gradients , 2016, eLife.

[21]  N. Grigorieff,et al.  Automatic estimation and correction of anisotropic magnification distortion in electron microscopes. , 2015, Journal of structural biology.

[22]  N. Grigorieff,et al.  CTFFIND4: Fast and accurate defocus estimation from electron micrographs , 2015, bioRxiv.

[23]  Nicholas K. Sauter,et al.  Architecture of the Synaptotagmin-SNARE Machinery for Neuronal Exocytosis , 2015, Nature.

[24]  Junjie Xu,et al.  The Synaptic Vesicle Release Machinery. , 2015, Annual review of biophysics.

[25]  Jesús G. Galaz-Montoya,et al.  Dimeric Organization of Blood Coagulation Factor VIII bound to Lipid Nanotubes , 2015, Scientific Reports.

[26]  Hon S Leong,et al.  CORRIGENDUM: Stage of Breast Cancer Progression Influences Cellular Response to Activation of the WNT/Planar Cell Polarity Pathway , 2015, Scientific Reports.

[27]  J. Rothman,et al.  Calcium sensitive ring-like oligomers formed by synaptotagmin , 2014, Proceedings of the National Academy of Sciences.

[28]  J. Rothman,et al.  Genetic analysis of the Complexin trans-clamping model for cross-linking SNARE complexes in vivo , 2014, Proceedings of the National Academy of Sciences.

[29]  W. Regehr,et al.  Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. , 2014, Annual review of physiology.

[30]  J. Rothman,et al.  Conformational dynamics of calcium-triggered activation of fusion by synaptotagmin. , 2013, Biophysical journal.

[31]  T. Südhof,et al.  Deconstructing complexin function in activating and clamping Ca2+-triggered exocytosis by comparing knockout and knockdown phenotypes , 2013, Proceedings of the National Academy of Sciences.

[32]  Thomas C. Südhof,et al.  Synaptotagmin-1 and Synaptotagmin-7 Trigger Synchronous and Asynchronous Phases of Neurotransmitter Release , 2013, Neuron.

[33]  A. Steven,et al.  One number does not fit all: mapping local variations in resolution in cryo-EM reconstructions. , 2013, Journal of structural biology.

[34]  T. Südhof,et al.  Neurotransmitter Release: The Last Millisecond in the Life of a Synaptic Vesicle , 2013, Neuron.

[35]  B. Davletov,et al.  Synaptotagmin Interaction with SNAP-25 Governs Vesicle Docking, Priming, and Fusion Triggering , 2013, The Journal of Neuroscience.

[36]  S. Hell,et al.  Phosphatidylinositol 4,5-bisphosphate clusters act as molecular beacons for vesicle recruitment , 2013, Nature Structural &Molecular Biology.

[37]  Patricia Grob,et al.  Synaptic proteins promote calcium-triggered fast transition from point contact to full fusion , 2012, eLife.

[38]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[39]  R. Jahn,et al.  Molecular machines governing exocytosis of synaptic vesicles , 2012, Nature.

[40]  G. van den Bogaart,et al.  Controlling synaptotagmin activity by electrostatic screening , 2012, Nature Structural &Molecular Biology.

[41]  J. Briggs,et al.  Complexin arrests a pool of docked vesicles for fast Ca2+‐dependent release , 2012, The EMBO journal.

[42]  J. Malsam,et al.  SNAREpin Assembly by Munc18-1 Requires Previous Vesicle Docking by Synaptotagmin 1* , 2012, The Journal of Biological Chemistry.

[43]  Willy Wriggers,et al.  Conventions and workflows for using Situs , 2012, Acta crystallographica. Section D, Biological crystallography.

[44]  Guozhi Tao,et al.  Real-space processing of helical filaments in SPARX. , 2012, Journal of structural biology.

[45]  R B Sutton,et al.  Calcium Binding by Synaptotagmin's C2A Domain is an Essential Element of the Electrostatic Switch That Triggers Synchronous Synaptic Transmission , 2012, The Journal of Neuroscience.

[46]  E. Chapman,et al.  Reconstituted synaptotagmin I mediates vesicle docking, priming, and fusion , 2011, The Journal of cell biology.

[47]  J. Rothman,et al.  Complexin cross-links prefusion SNAREs into a zigzag array. , 2011, Nature structural & molecular biology.

[48]  J. Rothman,et al.  A conformational switch in complexin is required for synaptotagmin to trigger synaptic fusion , 2011, Nature Structural &Molecular Biology.

[49]  D. Featherstone,et al.  Membrane Penetration by Synaptotagmin Is Required for Coupling Calcium Binding to Vesicle Fusion In Vivo , 2011, The Journal of Neuroscience.

[50]  J. Littleton,et al.  Differential regulation of synchronous versus asynchronous neurotransmitter release by the C2 domains of synaptotagmin 1 , 2010, Proceedings of the National Academy of Sciences.

[51]  William J Rice,et al.  Fourier-Bessel reconstruction of helical assemblies. , 2010, Methods in enzymology.

[52]  Dietmar Riedel,et al.  Synaptotagmin-1 Docks Secretory Vesicles to Syntaxin-1/SNAP-25 Acceptor Complexes , 2009, Cell.

[53]  Zhiping P. Pang,et al.  Synaptotagmin-1 functions as the Ca2+-sensor for spontaneous release , 2009, Nature Neuroscience.

[54]  D. Cafiso,et al.  The calcium-dependent and calcium-independent membrane binding of synaptotagmin 1: two modes of C2B binding. , 2009, Journal of molecular biology.

[55]  T. Südhof,et al.  Membrane Fusion: Grappling with SNARE and SM Proteins , 2009, Science.

[56]  J. Frank,et al.  SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs , 2008, Nature Protocols.

[57]  E. Chapman,et al.  Synaptotagmin arrests the SNARE complex before triggering fast, efficient membrane fusion in response to Ca2+ , 2008, Nature Structural &Molecular Biology.

[58]  R B Sutton,et al.  Structure of human synaptotagmin 1 C2AB in the absence of Ca2+ reveals a novel domain association. , 2007, Biochemistry.

[59]  J. Littleton,et al.  A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth , 2007, Nature Neuroscience.

[60]  Wen Jiang,et al.  EMAN2: an extensible image processing suite for electron microscopy. , 2007, Journal of structural biology.

[61]  E. Chapman,et al.  Ca2+-triggered simultaneous membrane penetration of the tandem C2-domains of synaptotagmin I. , 2006, Biophysical journal.

[62]  J. Rothman,et al.  A Clamping Mechanism Involved in SNARE-Dependent Exocytosis , 2006, Science.

[63]  D. Cafiso,et al.  Position of synaptotagmin I at the membrane interface: cooperative interactions of tandem C2 domains. , 2006, Biochemistry.

[64]  Y. Shin,et al.  Hemifusion arrest by complexin is relieved by Ca2+–synaptotagmin I , 2006, Nature Structural &Molecular Biology.

[65]  T. Südhof,et al.  Augmenting neurotransmitter release by enhancing the apparent Ca2+ affinity of synaptotagmin 1. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[66]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[67]  E. Neher,et al.  Presynaptic calcium and control of vesicle fusion , 2005, Current Opinion in Neurobiology.

[68]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[69]  E. Chapman,et al.  PIP2 increases the speed of response of synaptotagmin and steers its membrane-penetration activity toward the plasma membrane , 2004, Nature Structural &Molecular Biology.

[70]  C. Stevens,et al.  The Synaptotagmin C2A Domain Is Part of the Calcium Sensor Controlling Fast Synaptic Transmission , 2003, Neuron.

[71]  T. Südhof,et al.  Structure/Function Analysis of Ca2+ Binding to the C2A Domain of Synaptotagmin 1 , 2002, The Journal of Neuroscience.

[72]  I. Robinson,et al.  The C2B Ca2+-binding motif of synaptotagmin is required for synaptic transmission in vivo , 2002, Nature.

[73]  T. Schwarz,et al.  Synaptotagmins I and IV promote transmitter release independently of Ca2+ binding in the C2A domain , 2002, Nature.

[74]  E. Egelman A robust algorithm for the reconstruction of helical filaments using single-particle methods. , 2000, Ultramicroscopy.

[75]  Ralf Schneggenburger,et al.  Intracellular calcium dependence of transmitter release rates at a fast central synapse , 2000, Nature.

[76]  B Sakmann,et al.  Calcium sensitivity of glutamate release in a calyx-type terminal. , 2000, Science.

[77]  W Chiu,et al.  EMAN: semiautomated software for high-resolution single-particle reconstructions. , 1999, Journal of structural biology.

[78]  R A Milligan,et al.  Lipid nanotubes as substrates for helical crystallization of macromolecules. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[79]  T. Südhof,et al.  C2-domains, Structure and Function of a Universal Ca2+-binding Domain* , 1998, The Journal of Biological Chemistry.

[80]  T. Südhof,et al.  Bipartite Ca2+-Binding Motif in C2 Domains of Synaptotagmin and Protein Kinase C , 1996, Science.

[81]  R. Brown,et al.  Bilayer nanotubes and helical ribbons formed by hydrated galactosylceramides: acyl chain and headgroup effects. , 1995, Biophysical journal.

[82]  S. Sprang,et al.  Structure of the first C2 domain of synaptotagmin I: A novel Ca2+/phospholipid-binding fold , 1995, Cell.

[83]  T. Südhof,et al.  Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse , 1994, Cell.

[84]  J. Littleton,et al.  Calcium dependence of neurotransmitter release and rate of spontaneous vesicle fusions are altered in Drosophila synaptotagmin mutants. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[85]  Hugo J. Bellen,et al.  Mutational analysis of Drosophila synaptotagmin demonstrates its essential role in Ca2+-activated neurotransmitter release , 1993, Cell.

[86]  T. Südhof,et al.  Synaptotagmin: a calcium sensor on the synaptic vesicle surface. , 1992, Science.