The bifurcation diagrams for the Ginzburg–Landau system of superconductivity

In this paper, we provide the different types of bifurcation diagrams for a superconducting cylinder placed in a magnetic field along the direction of the axis of the cylinder. The computation is based on the numerical solutions of the Ginzburg–Landau model by the finite element method. The response of the material depends on the values of the exterior field, the Ginzburg–Landau parameter and the size of the domain. The solution branches in the different regions of the bifurcation diagrams are analyzed and open mathematical problems are mentioned. © 2002 Elsevier Science B.V. All rights reserved.

[1]  Michael Tinkham,et al.  Introduction to Superconductivity , 1975 .

[2]  Zhenghan Wang,et al.  Vortex structure for a d+is-wave superconductor , 1999 .

[3]  F. Peeters,et al.  Phase transitions in thin mesoscopic superconducting disks , 1998 .

[4]  Xing-Bin Pan,et al.  Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity , 1999 .

[5]  Andrew J. Bernoff,et al.  Onset of superconductivity in decreasing fields for general domains , 1998 .

[6]  Sam D. Howison,et al.  Macroscopic Models for Superconductivity , 1992, SIAM Rev..

[7]  Qiang Du,et al.  A model for variable thickness superconducting thin films , 1996 .

[8]  Xingbin Pan Surface Superconductivity¶in Applied Magnetic Fields Above HC2 , 2002 .

[9]  K. Mallick,et al.  Vortices in Ginzburg-Landau billiards , 1998, cond-mat/9812275.

[10]  Qiang Du,et al.  Analysis and Approximation of the Ginzburg-Landau Model of Superconductivity , 1992, SIAM Rev..

[11]  Daniel Phillips,et al.  The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model , 1999 .

[12]  Xing-Bin Pan,et al.  Surface Nucleation of Superconductivity in 3-Dimensions , 2000 .

[13]  Amandine Aftalion,et al.  ON THE SYMMETRY AND UNIQUENESS OF SOLUTIONS OF THE GINZBURG–LANDAU EQUATIONS FOR SMALL DOMAINS , 2000 .

[14]  K. Cheng Theory of Superconductivity , 1948, Nature.

[15]  Patricia Bauman,et al.  Stable Nucleation for the Ginzburg-Landau System with an Applied Magnetic Field , 1998 .

[16]  D. R. Tilley,et al.  Superfluidity and Superconductivity , 2019 .

[17]  P. Sternberg,et al.  Boundary Concentration for Eigenvalue Problems Related to the Onset of Superconductivity , 2000 .

[18]  Qiang Du,et al.  Discrete gauge invariant approximations of a time dependent Ginzburg-Landau model of superconductivity , 1998, Math. Comput..

[19]  Bernard Helffer,et al.  Upper critical field and location of surface nucleation of superconductivity , 2003 .

[20]  P. Gennes,et al.  Onset of superconductivity in decreasing fields , 1963 .

[21]  Sylvia Serfaty,et al.  LOCAL MINIMIZERS FOR THE GINZBURG–LANDAU ENERGY NEAR CRITICAL MAGNETIC FIELD: PART II , 1999 .

[22]  H. Brezis,et al.  Ginzburg-Landau Vortices , 1994 .

[23]  F. M. Peeters,et al.  Vortex Phase Diagram for Mesoscopic Superconducting Disks , 1998 .

[24]  P. D. Gennes,et al.  Superconductivity of metals and alloys , 1966 .

[25]  B. Helffer,et al.  Magnetic Bottles in Connection with Superconductivity , 2001 .

[26]  F. Peeters,et al.  Vortex states in superconducting rings , 1999, cond-mat/9910030.

[27]  William C. Troy,et al.  On the solutions of the one-dimensional Ginzburg-Landau equations for superconductivity , 1999 .

[28]  Sylvia Serfaty,et al.  Global minimizers for the Ginzburg–Landau functional below the first critical magnetic field , 2000 .

[29]  Xing-Bin Pan,et al.  Eigenvalue problems of Ginzburg–Landau operator in bounded domains , 1999 .

[30]  Sylvia Serfaty,et al.  Stable Configurations in Superconductivity: Uniqueness, Multiplicity, and Vortex‐Nucleation , 1999 .

[31]  S. Jonathan Chapman,et al.  Asymptotic Analysis of a Secondary Bifurcation of the One-Dimensional Ginzburg-Landau Equations of Superconductivity , 2000, SIAM J. Appl. Math..

[32]  P. Silverman,et al.  Type II superconductivity , 1969 .

[33]  Peterson,et al.  Computational simulation of type-II superconductivity including pinning phenomena. , 1995, Physical review. B, Condensed matter.

[34]  Qiang Du,et al.  High-Kappa Limits of the Time-Dependent Ginzburg-Landau Model , 1996, SIAM J. Appl. Math..

[35]  F. M. Peeters,et al.  MAGNETIZATION OF MESOSCOPIC SUPERCONDUCTING DISKS , 1997, cond-mat/9707018.

[36]  Qiang Du,et al.  Ginzburg-Landau vortices: dynamics, pinning, and hysteresis , 1997 .