Polycystic kidney disease 2-like 1 channel contributes to the bitter aftertaste perception of quinine

[1]  S. J. Moon,et al.  Recent Advances in Understanding Peripheral Taste Decoding I: 2010 to 2020 , 2021, Endocrinology and metabolism.

[2]  O. Nureki,et al.  Taste transduction and channel synapses in taste buds , 2020, Pflugers Archiv : European journal of physiology.

[3]  P. Devillier,et al.  Bitter Taste Receptors (TAS2Rs) in Human Lung Macrophages: Receptor Expression and Inhibitory Effects of TAS2R Agonists , 2019, Frontiers in physiology.

[4]  P. Devillier,et al.  Bitter Taste Receptors (TAS2Rs) in Human Lung Macrophages: Receptor Expression and Inhibitory Effects of TAS2R Agonists , 2019, Front. Physiol..

[5]  T. Ono,et al.  Rewarding Effects of Operant Dry-Licking Behavior on Neuronal Firing in the Nucleus Accumbens Core , 2017, Front. Pharmacol..

[6]  Takahiro Shimizu,et al.  The asparagine 533 residue in the outer pore loop region of the mouse PKD2L1 channel is essential for its voltage‐dependent inactivation , 2017, FEBS open bio.

[7]  D. Clapham,et al.  Atypical calcium regulation of the PKD2-L1 polycystin ion channel , 2016, eLife.

[8]  D. Contreras,et al.  Disruption of polycystin-L causes hippocampal and thalamocortical hyperexcitability. , 2016, Human molecular genetics.

[9]  Takahiro Shimizu,et al.  Gating modulation by heat of the polycystin transient receptor potential channel PKD2L1 (TRPP3) , 2014, Pflügers Archiv - European Journal of Physiology.

[10]  Y. Yanagawa,et al.  Sour Taste Responses in Mice Lacking PKD Channels , 2011, PloS one.

[11]  Takahiro Shimizu,et al.  Bimodal effect of alkalization on the polycystin transient receptor potential channel, PKD2L1 , 2011, Pflügers Archiv - European Journal of Physiology.

[12]  川口 仁 Activation of polycystic kidney disease-2-like 1 (PKD2L1)/PKD1L3 complex by acid mouse taste cells , 2011 .

[13]  M. Inoue,et al.  Taste function in mice with a targeted mutation of the pkd1l3 gene. , 2010, Chemical senses.

[14]  Stephen D. Roper,et al.  The cell biology of taste , 2010, The Journal of cell biology.

[15]  Takahiro Shimizu,et al.  Regulation of the murine TRPP3 channel by voltage, pH, and changes in cell volume , 2009, Pflügers Archiv - European Journal of Physiology.

[16]  M. Tominaga,et al.  Off‐response property of an acid‐activated cation channel complex PKD1L3–PKD2L1 , 2008, EMBO reports.

[17]  J. C. Kinnamon,et al.  The candidate sour taste receptor, PKD2L1, is expressed by type III taste cells in the mouse. , 2008, Chemical senses.

[18]  T. Uchida,et al.  Effects of quinine on the intracellular calcium level and membrane potential of PC 12 cultures , 2007, The Journal of pharmacy and pharmacology.

[19]  J. A. Peters,et al.  Transient receptor potential cation channels in disease. , 2007, Physiological reviews.

[20]  Jayaram Chandrashekar,et al.  The cells and logic for mammalian sour taste detection , 2006, Nature.

[21]  Hitoshi Inada,et al.  Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor , 2006, Proceedings of the National Academy of Sciences.

[22]  N. Ryba,et al.  The receptors and coding logic for bitter taste , 2005, Nature.

[23]  Jianzhi Zhang,et al.  Adaptive diversification of bitter taste receptor genes in Mammalian evolution. , 2003, Molecular biology and evolution.

[24]  Linda B. Buck,et al.  A family of candidate taste receptors in human and mouse , 2000, Nature.

[25]  N. Ryba,et al.  T2Rs Function as Bitter Taste Receptors , 2000, Cell.

[26]  Jayaram Chandrashekar,et al.  A Novel Family of Mammalian Taste Receptors , 2000, Cell.

[27]  A. Kaneko,et al.  Activation by bitter substances of a cationic channel in membrane patches excised from the bullfrog taste receptor cell , 1999, The Journal of physiology.

[28]  G. Borg,et al.  The perceived intensity of caffeine aftertaste: tasters versus nontasters. , 1999, Chemical senses.