A new composite energy absorbing system for aircraft and helicopter

In this paper, an innovative lightweight composite energy-absorbing keel beam system has been developed to be retrofitted in aircraft and helicopter in order to improve their crashworthiness performance. The developed system consists of everting stringer and keel beam. The sub-floor stringers were designed as everting stringer to guide and control the failure mechanisms at pre-crush and post-crush failure stages of composite keel beam webs and core. Polyurethane foam was employed to fill the core of the beam to eliminate any hypothesis of global buckling. Quasi-static axial crushing behaviour of the composite keel beam is investigated experimentally. The results showed that the crushing behaviour of the developed system is found to be sensitive to the change in keel beam web thickness. Laminate sequence has a significant influence on the failure mode types, average crush loads and energy absorption capability of composite keel beam. The desired energy absorbing mechanism revealed that the innovated system can be used for aircraft and helicopter and meet the requirements, together with substantial weight saving.