Analysis of genetic systems using experimental evolution and whole-genome sequencing

[1]  Adrian W. Briggs,et al.  Analysis of one million base pairs of Neanderthal DNA , 2006, Nature.

[2]  Anu Raghunathan,et al.  Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale , 2006, Nature Genetics.

[3]  Richard E. Lenski,et al.  Parallel Changes in Global Protein Profiles During Long-Term Experimental Evolution in Escherichia coli , 2006, Genetics.

[4]  Jun-Yi Leu,et al.  High-Resolution Mutation Mapping Reveals Parallel Experimental Evolution in Yeast , 2006, Nature Reviews Genetics.

[5]  Dominique Schneider,et al.  Tests of parallel molecular evolution in a long-term experiment with Escherichia coli. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Christa Lanz,et al.  Comprehensive mutation identification in an evolved bacterial cooperator and its cheating ancestor. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[7]  G. J. Velicer,et al.  Evolution of an obligate social cheater to a superior cooperator , 2006, Nature.

[8]  K. Foster Sociobiology: The Phoenix effect , 2006, Nature.

[9]  J. D. de Visser,et al.  Clonal Interference and the Periodic Selection of New Beneficial Mutations in Escherichia coli , 2006, Genetics.

[10]  R. Kishony,et al.  Functional classification of drugs by properties of their pairwise interactions , 2006, Nature Genetics.

[11]  D. Hartl,et al.  An Equivalence Principle for the Incorporation of Favorable Mutations in Asexual Populations , 2006, Science.

[12]  James R. Knight,et al.  Genome sequencing in microfabricated high-density picolitre reactors , 2005, Nature.

[13]  J. Shendure,et al.  Materials and Methods Som Text Figs. S1 and S2 Tables S1 to S4 References Accurate Multiplex Polony Sequencing of an Evolved Bacterial Genome , 2022 .

[14]  U. Alon,et al.  Optimality and evolutionary tuning of the expression level of a protein , 2005, Nature.

[15]  R. Lenski,et al.  Long-Term Experimental Evolution in Escherichia coli. XII. DNA Topology as a Key Target of Selection , 2005, Genetics.

[16]  G. Church,et al.  Modular epistasis in yeast metabolism , 2005, Nature Genetics.

[17]  Anu Raghunathan,et al.  High-throughput mutation detection underlying adaptive evolution of Escherichia coli-K12. , 2004, Genome research.

[18]  Stephen S Fong,et al.  Metabolic gene–deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes , 2004, Nature Genetics.

[19]  Dee R. Denver,et al.  High mutation rate and predominance of insertions in the Caenorhabditis elegans nuclear genome , 2004, Nature.

[20]  B. Birren,et al.  Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae , 2004, Nature.

[21]  R. Lenski,et al.  The fate of competing beneficial mutations in an asexual population , 2004, Genetica.

[22]  Kenneth J. Kauffman,et al.  Advances in flux balance analysis. , 2003, Current opinion in biotechnology.

[23]  R. Lenski,et al.  Microbial genetics: Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation , 2003, Nature Reviews Genetics.

[24]  Richard E. Lenski,et al.  Rates of DNA Sequence Evolution in Experimental Populations of Escherichia coli During 20,000 Generations , 2003, Journal of Molecular Evolution.

[25]  S. Quake,et al.  Sequence information can be obtained from single DNA molecules , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[26]  R. Lenski,et al.  Parallel changes in gene expression after 20,000 generations of evolution in Escherichia coli , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[27]  N. Colegrave Sex releases the speed limit on evolution , 2002, Nature.

[28]  M Imhof,et al.  Fitness effects of advantageous mutations in evolving Escherichia coli populations. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[29]  R. Lenski,et al.  Long-term experimental evolution in Escherichia coli. IX. Characterization of insertion sequence-mediated mutations and rearrangements. , 2000, Genetics.

[30]  M. Lynch,et al.  High direct estimate of the mutation rate in the mitochondrial genome of Caenorhabditis elegans. , 2000, Science.

[31]  S. Elena,et al.  EFFECT OF DELETERIOUS MUTATION-ACCUMULATION ON THE FITNESS OF RNA BACTERIOPHAGE MS2 , 2000 .

[32]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[33]  S. Elena,et al.  Clonal interference and the evolution of RNA viruses. , 1999, Science.

[34]  D. Botstein,et al.  Systematic changes in gene expression patterns following adaptive evolution in yeast. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[35]  J. Bull,et al.  Different trajectories of parallel evolution during viral adaptation. , 1999, Science.

[36]  W Arber,et al.  Genomic evolution during a 10,000-generation experiment with bacteria. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[37]  T. Ferenci,et al.  Adaptive mgl-regulatory mutations and genetic diversity evolving in glucose-limited Escherichia coli populations. , 1999, Environmental microbiology.

[38]  R. Lenski,et al.  Diminishing returns from mutation supply rate in asexual populations. , 1999, Science.

[39]  R. Heinrich,et al.  The Regulation of Cellular Systems , 1996, Springer US.

[40]  H. Kacser,et al.  The control of flux. , 1995, Biochemical Society transactions.

[41]  B. Palsson,et al.  Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110 , 1994, Applied and environmental microbiology.

[42]  R. Lenski,et al.  Long-Term Experimental Evolution in Escherichia coli. I. Adaptation and Divergence During 2,000 Generations , 1991, The American Naturalist.

[43]  S. Gould Wonderful Life: The Burgess Shale and the Nature of History , 1989 .

[44]  D. Hartl,et al.  Metabolic flux and fitness. , 1987, Genetics.

[45]  D. Hartl,et al.  Selection in chemostats. , 1983, Microbiological reviews.

[46]  J. Crow,et al.  Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. , 1972, Genetics.

[47]  J. M. Smith Evolution in Sexual and Asexual Populations , 1968, The American Naturalist.

[48]  S. A. Barnett,et al.  The major features of evolution , 1955 .

[49]  H. Muller Some Genetic Aspects of Sex , 1932, The American Naturalist.

[50]  H. L. Russell Bacteriology in its General Relation (Continued) , 1893, American Naturalist.