Surface-plasmon mediated photoluminescence enhancement of Pt-coated ZnO nanowires by inserting an atomic-layer-deposited Al2O3 spacer layer

Surface-plasmon mediated photoluminescence emission enhancement has been investigated for ZnO nanowire (NW)/Pt nanoparticle (NP) nanostructures by inserting an Al2O3 spacer layer. The thickness of the Al2O3 spacer layer and of the Pt NPs capped on the ZnO NWs are well controlled by atomic layer deposition. It is found that the photoluminescence property of the ZnO NW/Al2O3/Pt hybrid structure is highly tunable with respect to the thickness of the inserted Al2O3 spacer layer. The highest enhancement (∼14 times) of the near band emission of ZnO NWs is obtained with an optimized Al2O3 spacer layer thickness of 10 nm leading to a ultraviolet–visible emission ratio of 271.2 compared to 18.8 for bare ZnO NWs. The enhancement of emission is influenced by a Förster-type non-radiative energy transfer process of the exciton energy from ZnO NWs to Pt NPs as well as the coupling effect between excitons of ZnO NWs and surface plasmons of Pt NPs. The highly versatile and tunable photoluminescence properties of Pt-coated ZnO NWs achieved by introducing an Al2O3 spacer layer demonstrate their potential application in highly efficient optoelectronic devices.

[1]  D. Basak,et al.  Enhanced emission properties of Au/SiO2/ZnO nanorod layered structure: effect of SiO2 spacer layer and role of interfacial charge transfer , 2014 .

[2]  D. Basak,et al.  Cu/ZnO nanorods′ hybrid showing enhanced photoluminescence properties due to surface plasmon resonance , 2014 .

[3]  N. Dimitrijević,et al.  Synthesis-Dependent Oxidation State of Platinum on TiO2 and Their Influences on the Solar Simulated Photocatalytic Hydrogen Production from Water , 2013 .

[4]  Joonjae Oh,et al.  Investigation of Al2O3 diffusion barrier layer fabricated by atomic layer deposition for flexible Cu(In,Ga)Se2 solar cells , 2013 .

[5]  H. Kuo,et al.  Effect of the surface-plasmon-exciton coupling and charge transfer process on the photoluminescence of metal-semiconductor nanostructures. , 2013, Nanoscale.

[6]  S. Baek,et al.  Surface plasmon-enhanced light-emission mechanism of Ag-coated ZnO/Al2O3 core/shell nanorod structures. , 2013, Journal of nanoscience and nanotechnology.

[7]  N. Zheludev,et al.  Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer , 2013 .

[8]  U. Pal,et al.  Photoluminescence (PL) quenching and enhanced photocatalytic activity of Au-decorated ZnO nanorods fabricated through microwave-assisted chemical synthesis. , 2012, ACS applied materials & interfaces.

[9]  D. Basak,et al.  Highly enhanced UV emission due to surface plasmon resonance in Ag–ZnO nanorods , 2012 .

[10]  E. Goldys,et al.  Dense two-dimensional silver single and double nanoparticle arrays with plasmonic response in wide spectral range. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[11]  Mei Xue,et al.  Light concentration and redistribution in polymer solar cells by plasmonic nanoparticles. , 2012, Nanoscale.

[12]  Nicola Pinna,et al.  Atomic Layer Deposition of Nanostructured Materials for Energy and Environmental Applications , 2012, Advanced materials.

[13]  Jianfang Wang,et al.  Plasmon-induced modulation of the emission spectra of the fluorescent molecules near gold nanorods. , 2011, Nanoscale.

[14]  Claire M. Cobley,et al.  Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. , 2011, Chemical reviews.

[15]  Kwang J. Kim,et al.  A Novel Ionic Polymer Metal ZnO Composite (IPMZC) , 2011, Sensors.

[16]  Changhyun Jin,et al.  Subwavelength optical resonant cavity-induced enhancement of the near-band-edge emission from ZnO-core/SnO2-shell nanorods , 2011 .

[17]  T. Voss,et al.  Enhancement of the near-band-edge photoluminescence of ZnO nanowires: Important role of hydrogen incorporation versus plasmon resonances , 2011 .

[18]  Zhilin Yang,et al.  Synthetically directed self-assembly and enhanced surface-enhanced Raman scattering property of twinned crystalline Ag/Ag homojunction nanoparticles. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[19]  F. Ren,et al.  Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO-Ag coupling , 2011 .

[20]  J. Sha,et al.  Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays , 2011 .

[21]  L. Dai,et al.  Single ZnO Nanowire/p‐type GaN Heterojunctions for Photovoltaic Devices and UV Light‐Emitting Diodes , 2010, Advanced materials.

[22]  ZnO/Al 2 O 3 core-shell nanorod arrays: Growth, structural characterization, and luminescent property , 2010 .

[23]  Shin Saito,et al.  Evidence of localized surface plasmon enhanced magneto-optical effect in nanodisk array , 2010 .

[24]  Handong Sun,et al.  Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles , 2010 .

[25]  Handong Sun,et al.  Photoluminescence characteristics of high quality ZnO nanowires and its enhancement by polymer covering , 2010 .

[26]  C. Ronning,et al.  Stable enhancement of near-band-edge emission of ZnO nanowires by hydrogen incorporation , 2010, Nanotechnology.

[27]  M. J. Chen,et al.  ZnO/Al2O3 core–shell nanorod arrays: growth, structural characterization, and luminescent properties , 2009, 2010 3rd International Nanoelectronics Conference (INEC).

[28]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[29]  X. W. Sun,et al.  Erratum: “Giant enhancement of top emission from ZnO thin film by nanopatterned Pt” [Appl. Phys. Lett. 94, 151102 (2009)] , 2009 .

[30]  J. Hupp,et al.  Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells. , 2009, Journal of the American Chemical Society.

[31]  Handong Sun,et al.  Giant enhancement of top emission from ZnO thin film by nanopatterned Pt , 2009 .

[32]  M. H. Yeung,et al.  A general approach to the synthesis of gold-metal sulfide core-shell and heterostructures. , 2009, Angewandte Chemie.

[33]  Yong Ding,et al.  Low temperature synthesis and characterization of MgO/ZnO composite nanowire arrays , 2009, Nanotechnology.

[34]  R. Mu,et al.  Enhancement of ZnO photoluminescence by localized and propagating surface plasmons. , 2009, Optics express.

[35]  Jianfang Wang,et al.  Incorporation of Gold Nanorods and Their Enhancement of Fluorescence in Mesostructured Silica Thin Films , 2008 .

[36]  M. Zacharias,et al.  Enhanced surface-excitonic emission in ZnO/Al2O3 core–shell nanowires , 2008, Nanotechnology.

[37]  James C Blakesley,et al.  Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles. , 2008, Nano letters.

[38]  C. Shan,et al.  Temperature dependent photoluminescence study on phosphorus doped ZnO nanowires , 2008 .

[39]  Borja Sepúlveda,et al.  Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity. , 2008, Small.

[40]  Yang Liu,et al.  Optical and Electrical Performance of SnO2 Capped ZnO Nanowire Arrays , 2007 .

[41]  Mato Knez,et al.  Synthesis and Surface Engineering of Complex Nanostructures by Atomic Layer Deposition , 2007 .

[42]  Xiangyang Ma,et al.  Electrophotoluminescence of ZnO film , 2007 .

[43]  Tae-Seok Lee,et al.  Excitonic ultraviolet lasing in ZnO-based light emitting devices , 2007 .

[44]  Yang-Fang Chen,et al.  Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles , 2006 .

[45]  H. C. Ong,et al.  Emission enhancement from metallodielectric-capped ZnO films , 2006 .

[46]  Y. Liu,et al.  Extraction of optical constants of zinc oxide thin films by ellipsometry with various models , 2006 .

[47]  Federico Capasso,et al.  Broadband ZnO single-nanowire light-emitting diode. , 2006, Nano letters.

[48]  J. Thong,et al.  Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time , 2006 .

[49]  E. Samulski,et al.  Influence of excitation density on photoluminescence of zinc oxide with different morphologies and dimensions , 2005 .

[50]  Gareth M. Fuge,et al.  Synthesis of Aligned Arrays of Ultrathin ZnO Nanotubes on a Si Wafer Coated with a Thin ZnO Film , 2005 .

[51]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[52]  Peter A. Hobson,et al.  Surface Plasmon Mediated Emission from Organic Light‐Emitting Diodes , 2002 .

[53]  S. Surma Correlation of Electron Work Function and Surface‐Atomic Structure of Some d Transition Metals , 2001 .

[54]  Gottfried Strasser,et al.  Surface plasmon-enhanced photoluminescence from a single quantum well , 1999 .

[55]  K. Sundaram,et al.  Work function determination of zinc oxide films , 1996, Proceedings of SOUTHEASTCON '96.

[56]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[57]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[58]  T. Főrster,et al.  10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation , 1959 .