Numerical Evaluation of Multiple Integrals
暂无分享,去创建一个
[1] P. Rabinowitz,et al. New Error Coefficients for Estimating Quadrature Errors for Analytic Functions , 1970 .
[2] On the sum ∑ ⟨nα⟩−t and numerical integration , 1969 .
[3] G. Marsaglia. Random numbers fall mainly in the planes. , 1968, Proceedings of the National Academy of Sciences of the United States of America.
[4] V. L. N. Sarma. Eberlein measure and mechanical quadrature formulae. I. Basic theory. , 1968 .
[5] S. Haber. A combination of Monte Carlo and classical methods for evaluating multiple integrals , 1968 .
[6] A. Stroud,et al. Some Extensions of Integration Formulas , 1968 .
[7] R. Barnhill. An error analysis for numerical multiple integration. III , 1968 .
[8] Harold Conroy,et al. Molecular Schrödinger Equation. VIII. A New Method for the Evaluation of Multidimensional Integrals , 1967 .
[9] Lloyd Rosenberg. Bernstein Polynomials and Monte Carlo Integration , 1967 .
[10] D. I. Golenko,et al. The Monte Carlo Method. , 1967 .
[11] N M Korobov. SOME PROBLEMS IN THE THEORY OF DIOPHANTINE APPROXIMATION , 1967 .
[12] Philip J. Davis. A Construction of Nonnegative Approximate Quadratures , 1967 .
[13] S. K. Zaremba,et al. Good lattice points, discrepancy, and numerical integration , 1966 .
[14] M. J. D. Powell,et al. Weighted Uniform Sampling — a Monte Carlo Technique for Reducing Variance , 1966 .
[15] S. Haber. A modified Monte-Carlo quadrature. II. , 1966 .
[16] I. P. Mysovskikh. Proof of the minimality of the number of nodes in the cubature formula for a hypersphere , 1966 .
[17] A. Stroud,et al. Gaussian quadrature formulas , 1966 .
[18] J. N. Lyness. Integration rules of hypercubic symmetry over a certain spherically symmetric space , 1965 .
[19] J. N. Lyness. Symmetric integration rules for hypercubes. I. Error coefficients , 1965 .
[20] J. N. Lyness. Symmetric Integration Rules for Hypercubes III. Construction of Integration Rules Using Null Rules , 1965 .
[21] I. J. Schoenberg. On Monosplines of Least Deviation and Best Quadrature Formulae , 1965 .
[22] D. Secrest. Best approximate integration fuormulas and best error bounds , 1965 .
[23] Remarks on a Monte Carlo integration method , 1964 .
[24] Random quadratures of improved accuracy , 1964 .
[25] A. D. McLaren,et al. Optimal numerical integration on a sphere , 1963 .
[26] S. Sobolev. Some new problems in the theory of partial differential equations , 1963 .
[27] I. F. Sharygin,et al. A lower estimate for the error of quadrature formulae for certain classes of functions , 1963 .
[28] On the discrepancy of certain sequences mod. 1 , 1963 .
[29] J. Franklin. Deterministic Simulation of Random Processes , 1963 .
[30] T. E. Hull,et al. Random Number Generators , 1962 .
[31] E. Hlawka. Zur angenäherten Berechnung mehrfacher Integrale , 1962 .
[32] A. Stroud,et al. Approximate Calculation of Integrals , 1962 .
[33] E. Hlawka. Funktionen von beschränkter Variatiou in der Theorie der Gleichverteilung , 1961 .
[34] C. Haselgrove,et al. A method for numerical integration , 1961 .
[35] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[36] J. Hammersley. MONTE CARLO METHODS FOR SOLVING MULTIVARIABLE PROBLEMS , 1960 .
[37] J. Miller. Numerical Quadrature Over a Rectangular Domain in Two or More Dimensions , 1960 .
[38] S. M. Ermakov,et al. Polynomial Approximations and the Monte-Carlo Method , 1960 .
[39] W. C. Rheinboldt,et al. The hypercircle in mathematical physics , 1958 .
[40] H. Thacher. Optimum quadrature formulas in dimensions , 1957 .
[41] A. Stroud. Remarks on the disposition of points in numerical integration formulas. , 1957 .
[42] William H. Peirce,et al. Numerical integration over the spherical shell , 1957 .
[43] J. Cassels,et al. An Introduction to Diophantine Approximation , 1957 .
[44] F. B. Hildebrand,et al. Introduction To Numerical Analysis , 1957 .
[45] O. J. Marlowe,et al. Numerical integration over simplexes and cones , 1956 .
[46] A. Stroud,et al. Numerical integration over simplexes , 1956 .
[47] K. F. Roth. On irregularities of distribution , 1954 .
[48] P. Davis,et al. On the estimation of quadrature errors for analytic functions , 1954 .
[49] On uniform distribution of algebraic numbers , 1953 .
[50] R. D. Richtmyer. THE EVALUATION OF DEFINITE INTEGRALS, AND A QUASI-MONTE-CARLO METHOD BASED ON THE PROPERTIES OF ALGEBRAIC NUMBERS , 1951 .
[51] Leroy F. Meyers,et al. Best Approximate Integration Formulas , 1950 .
[52] N. Metropolis,et al. The Monte Carlo method. , 1949, Journal of the American Statistical Association.
[53] J. Radon,et al. Zur mechanischen Kubatur , 1948 .
[54] J. L. Coolidge,et al. A history of geometrical methods , 1947 .
[55] D. Jackson,et al. fourier series and orthogonal polynomials , 1943, The Mathematical Gazette.
[56] J. A. Clarkson,et al. On definitions of bounded variation for functions of two variables , 1933 .
[57] H. Weyl. Über die Gleichverteilung von Zahlen mod. Eins , 1916 .