Hybrid Systems: Review and Recent Progress

Hybrid systems are systems that exhibit both continuous-time and discrete-event dynamics. In the former case, the dynamics can be defined by differential or difference equations. For the latter, common representations include finite state machines and Petri nets. A good example of hybrid dynamics is multi-mode behavior. For example, different continuous-time models may be useful for capturing the dynamics of an aircraft in takeoff, landing, cruise, and other operational modes. Analogously, the control laws are generally very different in these cases as well-both plant models and controllers can be hybrid systems. Given the compounded complexity of hybrid systems, new methods are needed for their design and analysis. Over the last few years, research in this area has matured to a point where a number of tools have been developed.

[1]  J. Lygeros,et al.  A game theoretic approach to controller design for hybrid systems , 2000, Proceedings of the IEEE.

[2]  R. Decarlo,et al.  Perspectives and results on the stability and stabilizability of hybrid systems , 2000, Proceedings of the IEEE.

[3]  Panos J. Antsaklis,et al.  Characterization of Stabilizing Switching Sequences in Switched Linear Systems Using Piecewise Linear Lyapunov Functions , 2001, HSCC.

[4]  Panos J. Antsaklis,et al.  Hybrid System Modeling and Autonomous Control Systems , 1992, Hybrid Systems.

[5]  W. M. Wonham,et al.  The control of discrete event systems , 1989 .

[6]  James H. Taylor,et al.  MODELING AND SIMULATION OF HYBRID SYSTEMS IN MATLAB , 1996 .

[7]  S. Griffis EDITOR , 1997, Journal of Navigation.

[8]  Jan Lunze,et al.  Deterministic discrete-event representations of linear continuous-variable systems , 1999, Autom..

[9]  C.G. Cassandras,et al.  Optimal control of hybrid systems in manufacturing , 2000, Proceedings of the IEEE.

[10]  R. Horowitz,et al.  Control design of an automated highway system , 2000, Proceedings of the IEEE.

[11]  Thomas A. Henzinger,et al.  Discrete-Time Control for Rectangular Hybrid Automata , 1997, Theor. Comput. Sci..

[12]  Nancy A. Lynch,et al.  Hybrid I/O automata , 1995, Inf. Comput..

[13]  Jörg Raisch,et al.  Discrete approximation and supervisory control of continuous systems , 1998, IEEE Trans. Autom. Control..

[14]  M. Branicky Multiple Lyapunov functions and other analysis tools for switched and hybrid systems , 1998, IEEE Trans. Autom. Control..

[15]  A. Michel Recent trends in the stability analysis of hybrid dynamical systems , 1999 .

[16]  Panos J. Antsaklis,et al.  An invariant‐based approach to the design of hybrid control systems , 2001 .

[17]  George J. Pappas,et al.  Discrete abstractions of hybrid systems , 2000, Proceedings of the IEEE.

[18]  Anders Rantzer,et al.  Computation of piecewise quadratic Lyapunov functions for hybrid systems , 1997, 1997 European Control Conference (ECC).

[19]  O. Stursberg,et al.  Continuous-discrete interactions in chemical processing plants , 2000, Proceedings of the IEEE.

[20]  Bo Egardt,et al.  Control design for integrator hybrid systems , 1998, IEEE Trans. Autom. Control..

[21]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[22]  Jan Lunze,et al.  Qualitative modelling of linear dynamical systems with quantized state measurements , 1994, Autom..

[23]  Pieter J. Mosterman,et al.  An Overview of Hybrid Simulation Phenomena and Their Support by Simulation Packages , 1999, HSCC.

[24]  A. Michel,et al.  Stability theory for hybrid dynamical systems , 1998, IEEE Trans. Autom. Control..

[25]  Edward A. Lee,et al.  A hierarchical hybrid system model and its simulation , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[26]  A. Stephen Morse,et al.  Control Using Logic-Based Switching , 1997 .

[27]  Panos J. Antsaklis,et al.  A logical DES approach to the design of hybrid control systems , 1996 .

[28]  Panos J. Antsaklis,et al.  Stability and stabilizability of discrete event dynamic systems , 1991, JACM.

[29]  Thomas A. Henzinger,et al.  A User Guide to HyTech , 1995, TACAS.

[30]  A. Morse,et al.  Basic problems in stability and design of switched systems , 1999 .

[31]  C. Pinello,et al.  Automotive engine control and hybrid systems: challenges and opportunities , 2000, Proceedings of the IEEE.

[32]  T.-J. Tarn,et al.  Integration of task scheduling, action planning, and control in robotic manufacturing systems , 2000, Proceedings of the IEEE.

[33]  Tadao Murata,et al.  Petri nets: Properties, analysis and applications , 1989, Proc. IEEE.

[34]  Edward A. Lee,et al.  Overview of the Ptolemy project , 2001 .

[35]  A. S. Morse Logic-based switching and control , 1995 .

[36]  Panos J. Antsaklis,et al.  Feedback control of Petri nets based on place invariants , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[37]  Michael D. Lemmon,et al.  Supervisory hybrid systems , 1999 .

[38]  Anil Nerode,et al.  Models for Hybrid Systems: Automata, Topologies, Controllability, Observability , 1992, Hybrid Systems.

[39]  A. Willsky,et al.  Observability of discrete event dynamic systems , 1990 .

[40]  P.J. Antsaklis,et al.  Supervisory control of hybrid systems , 2000, Proceedings of the IEEE.

[41]  Panos J. Antsaklis,et al.  An introduction to intelligent and autonomous control , 1993 .

[42]  Bo Hu,et al.  Towards a stability theory of general hybrid dynamical systems , 1999, Autom..

[43]  Panos J. Antsaklis,et al.  Towards intelligent autonomous control systems: Architecture and fundamental issues , 1989, J. Intell. Robotic Syst..

[44]  J. Lygeros,et al.  High-level modeling and analysis of the traffic alert and collision avoidance system (TCAS) , 2000, Proceedings of the IEEE.

[45]  A. Michel,et al.  Lyapunov Stability of a Class of Discrete Event Systems , 1991 .