Hybrid Model Based on Genetic Algorithms and SVM Applied to Variable Selection within Fruit Juice Classification

Given the background of the use of Neural Networks in problems of apple juice classification, this paper aim at implementing a newly developed method in the field of machine learning: the Support Vector Machines (SVM). Therefore, a hybrid model that combines genetic algorithms and support vector machines is suggested in such a way that, when using SVM as a fitness function of the Genetic Algorithm (GA), the most representative variables for a specific classification problem can be selected.

[1]  René Venegas,et al.  Clasificación de textos académicos en función de su contenido léxico-semántico , 2007 .

[2]  Dae-Ki Kang,et al.  Performance enhancement of SVM ensembles using genetic algorithms in bankruptcy prediction , 2010, 2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE).

[3]  Ujjwal Maulik,et al.  Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification , 2003, IEEE Trans. Geosci. Remote. Sens..

[4]  José Manuel Andrade,et al.  SELECTION OF VARIABLES BY GENETIC ALGORITHMS TO CLASSIFY APPLE BEVERAGES BY ARTIFICIAL NEURAL NETWORKS , 2005, Appl. Artif. Intell..

[5]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[6]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[7]  M. P. Gómez-Carracedo,et al.  Linking chemical knowledge and genetic algorithms using two populations and focused multimodal search , 2007 .

[8]  Marcos Gestal Pose,et al.  Several Approaches to Variable Selection by Means of Genetic Algorithms , 2006 .

[9]  A. Atiya,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[10]  Z. Ramadan,et al.  Metabolic profiling using principal component analysis, discriminant partial least squares, and genetic algorithms. , 2006, Talanta.

[11]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[12]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[13]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[14]  Ping-Feng Pai,et al.  Forecasting regional electricity load based on recurrent support vector machines with genetic algorithms , 2005 .

[15]  Daniel Rivero,et al.  A Texture-based Classification Method for Proteins in Two-Dimensional Electrophoresis Gel Images - A Feature Selection Method using Support Vector Machines and Genetic Algorithms , 2013, VISAPP.

[16]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[17]  Yuan-Hai Shao,et al.  A GA-based model selection for smooth twin parametric-margin support vector machine , 2013, Pattern Recognit..

[18]  Carlos Fernandez-Lozano,et al.  Texture Classification Using Kernel-Based Techniques , 2013, IWANN.

[19]  F. Tan,et al.  Prediction of mitochondrial proteins based on genetic algorithm – partial least squares and support vector machine , 2007, Amino Acids.

[20]  Gülay Tezel,et al.  A genetic algorithm-support vector machine method with parameter optimization for selecting the tag SNPs , 2013, J. Biomed. Informatics.

[21]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[22]  F. H. Bennett,et al.  Genetic programming III: Darwinian invention and problem solving [Book Review] , 1999, IEEE Transactions on Evolutionary Computation.

[23]  José Luis Rojo-Álvarez,et al.  Feature selection using support vector machines and bootstrap methods for ventricular fibrillation detection , 2012, Expert Syst. Appl..

[24]  Mineichi Kudo,et al.  A comparative evaluation of medium- and large-scale feature selectors for pattern classifiers , 1998, Kybernetika.

[25]  Pablo Cortés,et al.  Use of a genetic algorithm for building efficient choice designs , 2012, Int. J. Bio Inspired Comput..

[26]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[27]  Chris D. Nugent,et al.  Genetic algorithm and pure random search for exosensor distribution optimisation , 2012, Int. J. Bio Inspired Comput..

[28]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[29]  Kalyanmoy Deb,et al.  A Comparative Analysis of Selection Schemes Used in Genetic Algorithms , 1990, FOGA.

[30]  Daphne Koller,et al.  Toward Optimal Feature Selection , 1996, ICML.

[31]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[32]  M. Barker,et al.  Partial least squares for discrimination , 2003 .

[33]  James R. Schott,et al.  Principles of Multivariate Analysis: A User's Perspective , 2002 .

[34]  A. L. Samuel,et al.  Some studies in machine learning using the game of checkers. II: recent progress , 1967 .

[35]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[36]  Nihat Yilmaz,et al.  Feature Selection Method Based on Artificial Bee Colony Algorithm and Support Vector Machines for Medical Datasets Classification , 2013, TheScientificWorldJournal.

[37]  Jin-Kao Hao,et al.  A Hybrid GA/SVM Approach for Gene Selection and Classification of Microarray Data , 2006, EvoWorkshops.

[38]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[39]  M. P. Gómez-Carracedo,et al.  Chemically driven variable selection by focused multimodal genetic algorithms in mid-IR spectra , 2007, Analytical and bioanalytical chemistry.

[40]  George S. Sebestyen,et al.  Decision-making processes in pattern recognition , 1962 .

[41]  Ingoo Han,et al.  Hybrid genetic algorithms and support vector machines for bankruptcy prediction , 2006, Expert Syst. Appl..

[42]  Hasan Ocak,et al.  A Medical Decision Support System Based on Support Vector Machines and the Genetic Algorithm for the Evaluation of Fetal Well-Being , 2013, Journal of Medical Systems.

[43]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[44]  Yin-Fu Huang,et al.  Extracting Physicochemical Features to Predict Protein Secondary Structure , 2013, TheScientificWorldJournal.

[45]  Jack Sklansky,et al.  A note on genetic algorithms for large-scale feature selection , 1989, Pattern Recognition Letters.

[46]  I. Jolliffe Principal Component Analysis , 2002 .

[47]  Arthur L. Samuel,et al.  Some Studies in Machine Learning Using the Game of Checkers , 1967, IBM J. Res. Dev..

[48]  Michael E. Wall,et al.  Galib: a c++ library of genetic algorithm components , 1996 .

[49]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[50]  Chih-Hung Wu,et al.  A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy , 2007, Expert Syst. Appl..

[51]  Roman Rosipal,et al.  Overview and Recent Advances in Partial Least Squares , 2005, SLSFS.

[52]  David M. Skapura,et al.  Neural networks - algorithms, applications, and programming techniques , 1991, Computation and neural systems series.

[53]  Thomas Martinetz,et al.  Prediction of apoptosis protein locations with genetic algorithms and support vector machines through a new mode of pseudo amino acid composition. , 2010, Protein and peptide letters.

[54]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[55]  John R. Koza,et al.  Genetic Programming III: Darwinian Invention & Problem Solving , 1999 .

[56]  Q. Tan,et al.  Gene Expression Profiles for Predicting Metastasis in Breast Cancer: A Cross-Study Comparison of Classification Methods , 2012, TheScientificWorldJournal.

[57]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[58]  Rong-Jiang Ma,et al.  Application of Particle Swarm Optimization Algorithm in the Heating System Planning Problem , 2013, TheScientificWorldJournal.

[59]  M. P. Gómez-Carracedo,et al.  Classification of apple beverages using artificial neural networks with previous variable selection , 2004 .

[60]  Stefano Cagnoni,et al.  2D-PAGE Texture Classification using Support Vector Machines and Genetic Algorithms - An Hybrid Approach for Texture Image Analysis , 2013, BIOINFORMATICS.

[61]  Cheng-Hua Wang,et al.  Support vector regression with genetic algorithms in forecasting tourism demand , 2007 .

[62]  John R. Koza Genetic Programming III - Darwinian Invention and Problem Solving , 1999, Evolutionary Computation.

[63]  Pedro Larrañaga,et al.  A review of feature selection techniques in bioinformatics , 2007, Bioinform..

[64]  Adam Prügel-Bennett,et al.  Evolving Fisher Kernels for Biological Sequence Classification , 2013, Evolutionary Computation.

[65]  Muchenxuan Tong,et al.  An ensemble of SVM classifiers based on gene pairs , 2013, Comput. Biol. Medicine.

[66]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[67]  Philip M. Lewis,et al.  The characteristic selection problem in recognition systems , 1962, IRE Trans. Inf. Theory.

[68]  Lucas Paúl Pérez Hernández,et al.  A linear approach to determining an SVM-based fault locator’s optimal parameters , 2009 .

[69]  Li Li,et al.  A Robust Hybrid Approach Based on Estimation of Distribution Algorithm and Support Vector Machine for Hunting Candidate Disease Genes , 2013, TheScientificWorldJournal.

[70]  Yudong Zhang,et al.  An MR Brain Images Classifier System via Particle Swarm Optimization and Kernel Support Vector Machine , 2013, TheScientificWorldJournal.

[71]  Ron Kohavi,et al.  Wrappers for Feature Subset Selection , 1997, Artif. Intell..

[72]  Carlos Morell Pérez,et al.  Support vector machine model for regression applied to the estimation of the creep ruptura stress in ferritic steels , 2009 .

[73]  Vladimir Vapnik,et al.  The Nature of Statistical Learning , 1995 .

[74]  LarrañagaPedro,et al.  A review of feature selection techniques in bioinformatics , 2007 .

[75]  Sayan Mukherjee,et al.  Choosing Multiple Parameters for Support Vector Machines , 2002, Machine Learning.

[76]  Lenan Wu,et al.  Nonlinear Demodulation and Channel Coding in EBPSK Scheme , 2012, TheScientificWorldJournal.