Facial biometrics on mobile devices: interaction and quality assessment

[1]  Vincenzo Conti,et al.  Usability Analysis of a Novel Biometric Authentication Approach for Android-Based Mobile Devices , 2014, Journal of Telecommunications and Information Technology.

[2]  Judith Liu-Jimenez,et al.  Usability analysis of dynamic signature verification in mobile environments , 2013, 2013 International Conference of the BIOSIG Special Interest Group (BIOSIG).

[3]  Arun Ross,et al.  Design and evaluation of photometric image quality measures for effective face recognition , 2014, IET Biom..

[4]  Ramón Blanco-Gonzalo,et al.  Usability evaluation of biometrics in mobile environments , 2013, 2013 6th International Conference on Human System Interactions (HSI).

[5]  Josephine Sullivan,et al.  One millisecond face alignment with an ensemble of regression trees , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Lama Nachman,et al.  Unobtrusive gait verification for mobile phones , 2014, SEMWEB.

[7]  M. Abdel-Mottaleb,et al.  Application notes - Algorithms for Assessing the Quality of Facial Images , 2007, IEEE Computational Intelligence Magazine.

[8]  Serge Egelman,et al.  Keep on Lockin' in the Free World: A Multi-National Comparison of Smartphone Locking , 2016, CHI.

[9]  Richard M. Guest,et al.  Voice and face interaction evaluation of a mobile authentication platform , 2017, 2017 International Carnahan Conference on Security Technology (ICCST).

[10]  Lynne Baillie,et al.  Why aren't Users Using Protection? Investigating the Usability of Smartphone Locking , 2015, MobileHCI.

[11]  Christophe Rosenberger,et al.  Evaluation of Biometric Systems , 2012 .

[12]  David J. Kriegman,et al.  From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Claudia Nickel,et al.  User Survey on Phone Security and Usage , 2010, BIOSIG.

[14]  Kang G. Shin,et al.  Keep Others from Peeking at Your Mobile Device Screen! , 2019, MobiCom.

[15]  Patrick J. Grother,et al.  Ongoing Face Recognition Vendor Test (FRVT) Part 2: Identification , 2018 .

[16]  Patricia Ladret,et al.  The blur effect: perception and estimation with a new no-reference perceptual blur metric , 2007, Electronic Imaging.

[17]  Kiran B. Raja,et al.  Assessing face image quality for smartphone based face recognition system , 2017, 2017 5th International Workshop on Biometrics and Forensics (IWBF).

[18]  Mahmoud Neji,et al.  Hand pose estimation system based on Viola-Jones algorithm for Android devices , 2016, 2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA).

[19]  Raul Sánchez-Reillo,et al.  User acceptance of planar semiconductor fingerprint sensors , 2015, 2015 International Carnahan Conference on Security Technology (ICCST).

[20]  Ning Zhang,et al.  A survey on touch dynamics authentication in mobile devices , 2016, Comput. Secur..

[21]  Judith Liu-Jimenez,et al.  Optimizing resources on smartphone gait recognition , 2017, 2017 IEEE International Joint Conference on Biometrics (IJCB).

[22]  Janette Moody Public Perceptions of Biometric Devices: The Effect of Misinformation on Acceptance and Use , 2004 .

[23]  Maurizio Rebaudengo,et al.  On gait recognition with smartphone accelerometer , 2015, 2015 4th Mediterranean Conference on Embedded Computing (MECO).

[24]  Steven Furnell,et al.  Authentication of users on mobile telephones - A survey of attitudes and practices , 2005, Comput. Secur..

[25]  Rama Chellappa,et al.  Continuous User Authentication on Mobile Devices: Recent progress and remaining challenges , 2016, IEEE Signal Processing Magazine.

[26]  M. Saquib Sarfraz,et al.  Head Pose Estimation in Face Recognition Across Pose Scenarios , 2008, VISAPP.

[27]  Tran Khanh Dang,et al.  Face Quality Measure for Face Authentication , 2016, FDSE.

[28]  Annie I. Antón,et al.  Towards understanding user perceptions of authentication technologies , 2007, WPES '07.

[29]  Joseph Bonneau,et al.  The Science of Guessing: Analyzing an Anonymized Corpus of 70 Million Passwords , 2012, 2012 IEEE Symposium on Security and Privacy.

[30]  Qing Yang,et al.  HMOG: New Behavioral Biometric Features for Continuous Authentication of Smartphone Users , 2015, IEEE Transactions on Information Forensics and Security.

[31]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[32]  Markus Dürmuth,et al.  Quantifying the security of graphical passwords: the case of android unlock patterns , 2013, CCS.

[33]  Deva Ramanan,et al.  Face detection, pose estimation, and landmark localization in the wild , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[34]  Stan Z. Li,et al.  Standardization of Face Image Sample Quality , 2007, ICB.

[35]  Stefanos Zafeiriou,et al.  Robust Discriminative Response Map Fitting with Constrained Local Models , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Lina J. Karam,et al.  Quality labeled faces in the wild (QLFW): a database for studying face recognition in real-world environments , 2015, Electronic Imaging.

[37]  Jaihie Kim,et al.  An empirical study on iris recognition in a mobile phone , 2016, Expert Syst. Appl..

[38]  Stan Z. Li,et al.  Face Image Quality Evaluation for ISO/IEC Standards 19794-5 and 29794-5 , 2009, ICB.

[39]  Blase Ur,et al.  Biometric authentication on iPhone and Android: Usability, perceptions, and influences on adoption , 2015 .

[40]  Yang Wang,et al.  Dissecting pattern unlock: The effect of pattern strength meter on pattern selection , 2014, J. Inf. Secur. Appl..

[41]  P. Jothi Thilaga,et al.  Modern Face Recognition with Deep Learning , 2018, 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT).

[42]  Daniel González-Jiménez,et al.  Face recognition for authentication on mobile devices , 2016, Image Vis. Comput..

[43]  Steven A Julious,et al.  Estimating the sample size for a pilot randomised trial to minimise the overall trial sample size for the external pilot and main trial for a continuous outcome variable , 2015, Statistical methods in medical research.

[44]  Raul Sánchez-Reillo,et al.  Biometrics on Mobile Devices , 2015, Encyclopedia of Biometrics.

[45]  Gang Hua,et al.  Labeled Faces in the Wild: A Survey , 2016 .

[46]  Steven Furnell,et al.  Authentication and Supervision: A Survey of User Attitudes , 2000, Comput. Secur..

[47]  Chaninart Thongleng,et al.  Case Studies to Improve Viola-Jones for Eye Detection , 2018, ICIGP 2018.

[48]  Baptiste Hemery,et al.  A study of users' acceptance and satisfaction of biometric systems , 2010, 44th Annual 2010 IEEE International Carnahan Conference on Security Technology.

[49]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[50]  Sartra Wongthanavasu,et al.  Face Recognition In Unconstrained Environment , 2018, 2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE).

[51]  László Neumann,et al.  Global Contrast Factor - a New Approach to Image Contrast , 2005, CAe.

[52]  Michael Weber,et al.  Password entry usability and shoulder surfing susceptibility on different smartphone platforms , 2012, MUM.

[53]  Mary F. Theofanos,et al.  Usability and Biometrics: Ensuring Successful Biometric Systems | NIST , 2008 .