ReaDDy 2: Fast and flexible software framework for interacting-particle reaction dynamics

Interacting-particle reaction dynamics (iPRD) combines the simulation of dynamical trajectories of interacting particles as in molecular dynamics (MD) simulations with reaction kinetics, in which particles appear, disappear, or change their type and interactions based on a set of reaction rules. This combination facilitates the simulation of reaction kinetics in crowded environments, involving complex molecular geometries such as polymers, and employing complex reaction mechanisms such as breaking and fusion of polymers. iPRD simulations are ideal to simulate the detailed spatiotemporal reaction mechanism in complex and dense environments, such as in signalling processes at cellular membranes, or in nano- to microscale chemical reactors. Here we introduce the iPRD software ReaDDy 2, which provides a Python interface in which the simulation environment, particle interactions and reaction rules can be conveniently defined and the simulation can be run, stored and analyzed. A C++ interface is available to enable deeper and more flexible interactions with the framework. The main computational work of ReaDDy 2 is done in hardware-specific simulation kernels. While the version introduced here provides single- and multi-threading CPU kernels, the architecture is ready to implement GPU and multi-node kernels. We demonstrate the efficiency and validity of ReaDDy 2 using several benchmark examples. ReaDDy 2 is available at the https://readdy.github.io/ website.

[1]  Leslie M Loew,et al.  SpringSaLaD: A Spatial, Particle-Based Biochemical Simulation Platform with Excluded Volume. , 2016, Biophysical journal.

[2]  T. C. B. McLeish,et al.  Polymer Physics , 2009, Encyclopedia of Complexity and Systems Science.

[3]  Frank Noé,et al.  Lipid-mediated PX-BAR domain recruitment couples local membrane constriction to endocytic vesicle fission , 2017, Nature Communications.

[4]  Scott B. Baden,et al.  Fast Monte Carlo Simulation Methods for Biological Reaction-Diffusion Systems in Solution and on Surfaces , 2008, SIAM J. Sci. Comput..

[5]  Steven S. Andrews,et al.  Smoldyn: particle‐based simulation with rule‐based modeling, improved molecular interaction and a library interface , 2017, Bioinform..

[6]  A. Szabó,et al.  Role of diffusion in ligand binding to macromolecules and cell-bound receptors. , 1982, Biophysical journal.

[7]  Klaus Schulten,et al.  First passage time approach to diffusion controlled reactions , 1980 .

[8]  P. R. ten Wolde,et al.  Simulating biochemical networks at the particle level and in time and space: Green's function reaction dynamics. , 2005, Physical review letters.

[9]  John Parkinson,et al.  Cell++ - simulating biochemical pathways , 2006, Bioinform..

[10]  Johan Hattne,et al.  Stochastic reaction-diffusion simulation with MesoRD , 2005, Bioinform..

[11]  T. Franosch,et al.  Anomalous transport in the crowded world of biological cells , 2013, Reports on progress in physics. Physical Society.

[12]  P. R. ten Wolde,et al.  Multiscale simulations of anisotropic particles combining molecular dynamics and Green's function reaction dynamics. , 2016, The Journal of chemical physics.

[13]  Frank Noé,et al.  ReaDDy - A Software for Particle-Based Reaction-Diffusion Dynamics in Crowded Cellular Environments , 2013, PloS one.

[14]  John E. Stone,et al.  Long time-scale simulations of in vivo diffusion using GPU hardware , 2009, 2009 IEEE International Symposium on Parallel & Distributed Processing.

[15]  P. R. ten Wolde,et al.  Combining molecular dynamics with mesoscopic Green's function reaction dynamics simulations. , 2015, The Journal of chemical physics.

[16]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[17]  N. Shigesada,et al.  Theory of Bimolecular Reaction Processes in Liquids , 1967 .

[18]  Erwin Frey,et al.  Effective Perrin theory for the anisotropic diffusion of a strongly hindered rod , 2008, EPL (Europhysics Letters).

[19]  Gideon Rechavi,et al.  A Pivotal Role of Cyclic AMP-Responsive Element Binding Protein in Tumor Progression , 2004, Cancer Research.

[20]  D. Ermak,et al.  Brownian dynamics with hydrodynamic interactions , 1978 .

[21]  Scott H. Northrup,et al.  Short range caging effects for reactions in solution. I. Reaction rate constants and short range caging picture , 1979 .

[22]  Frank Noé,et al.  Simulation tools for particle-based reaction-diffusion dynamics in continuous space , 2014, BMC biophysics.

[23]  F. Noé,et al.  An efficient multi-scale Green's function reaction dynamics scheme. , 2017, The Journal of chemical physics.

[24]  M. Smoluchowski Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen , 1906 .

[25]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[26]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[27]  P. R. ten Wolde,et al.  Green's-function reaction dynamics: a particle-based approach for simulating biochemical networks in time and space. , 2005, The Journal of chemical physics.

[28]  Frank Noé,et al.  Higher-order architecture of rhodopsin in intact photoreceptors and its implication for phototransduction kinetics. , 2015, Structure.

[29]  M. Doi Stochastic theory of diffusion-controlled reaction , 1976 .

[30]  Axel Arnold,et al.  ESPResSo 3.1: Molecular Dynamics Software for Coarse-Grained Models , 2013 .

[31]  Frank Noé,et al.  Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate , 2013, Nature.

[32]  F. Noé,et al.  Complete protein–protein association kinetics in atomic detail revealed by molecular dynamics simulations and Markov modelling , 2017, Nature Chemistry.

[33]  B. Hegner,et al.  Autoimmune mediated G-protein receptor activation in cardiovascular and renal pathologies , 2009, Thrombosis and Haemostasis.

[34]  Frank Noé,et al.  Particle-based membrane model for mesoscopic simulation of cellular dynamics. , 2017, The Journal of chemical physics.

[35]  Samuel A. Isaacson,et al.  The Reaction-Diffusion Master Equation as an Asymptotic Approximation of Diffusion to a Small Target , 2009, SIAM J. Appl. Math..

[36]  B. Trzaskowski,et al.  Action of Molecular Switches in GPCRs - Theoretical and Experimental Studies , 2012, Current medicinal chemistry.

[37]  Masaru Tomita,et al.  A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation , 2009, Systems and Synthetic Biology.

[38]  Michael E. Greenberg,et al.  Coupling of the RAS-MAPK Pathway to Gene Activation by RSK2, a Growth Factor-Regulated CREB Kinase , 1996, Science.

[39]  F. Noé,et al.  Reversible Interacting-Particle Reaction Dynamics. , 2018, Journal of Physical Chemistry B.

[40]  Thomas Hinze,et al.  Rule-based spatial modeling with diffusing, geometrically constrained molecules , 2010, BMC Bioinformatics.

[41]  James T. Hynes,et al.  The stable states picture of chemical reactions. II. Rate constants for condensed and gas phase reaction models , 1980 .

[42]  Frank Noé,et al.  ReaDDyMM: Fast interacting particle reaction-diffusion simulations using graphical processing units. , 2015, Biophysical journal.

[43]  U. Bhalla Signaling in small subcellular volumes. I. Stochastic and diffusion effects on individual pathways. , 2004, Biophysical journal.

[44]  Aleksandar Donev,et al.  A First-Passage Kinetic Monte Carlo algorithm for complex diffusion-reaction systems , 2009, J. Comput. Phys..

[45]  B. Strooper,et al.  The role of G protein-coupled receptors in the pathology of Alzheimer's disease , 2011, Nature Reviews Neuroscience.

[46]  W. C. Swope,et al.  A computer simulation method for the calculation of equilibrium constants for the formation of physi , 1981 .

[47]  Max Hoffmann,et al.  Oscillations of Min-proteins in micropatterned environments: a three-dimensional particle-based stochastic simulation approach. , 2014, Soft matter.

[48]  Arieh Warshel,et al.  The empirical valence bond model: theory and applications , 2011 .

[49]  M. Oettel,et al.  Optimum free energy in the reference functional approach for the integral equations theory , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[50]  H. Yukawa On the Interaction of Elementary Particles I , 1955 .

[51]  T. Lohman,et al.  Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity , 1978, Quarterly Reviews of Biophysics.

[52]  Detlef W. M. Hofmann,et al.  A new reactive potential for the molecular dynamics simulation of liquid water , 2007 .

[53]  S. Isaacson A convergent reaction-diffusion master equation. , 2012, Journal of Chemical Physics.

[54]  R. Erban,et al.  Stochastic modelling of reaction–diffusion processes: algorithms for bimolecular reactions , 2009, Physical biology.

[55]  John E. Stone,et al.  Lattice microbes: High‐performance stochastic simulation method for the reaction‐diffusion master equation , 2013, J. Comput. Chem..

[56]  S. Jonathan Chapman,et al.  Multiscale Reaction-Diffusion Algorithms: PDE-Assisted Brownian Dynamics , 2012, SIAM J. Appl. Math..

[57]  Aleksandar Donev,et al.  Efficient reactive Brownian dynamics. , 2017, The Journal of chemical physics.

[58]  Hans-Jörg Limbach,et al.  ESPResSo - an extensible simulation package for research on soft matter systems , 2006, Comput. Phys. Commun..

[59]  Masao Doi,et al.  Theory of diffusion-controlled reaction between non-simple molecules. II , 1975 .

[60]  Felix Sedlmeier,et al.  Hydration repulsion between biomembranes results from an interplay of dehydration and depolarization , 2012, Proceedings of the National Academy of Sciences.

[61]  P. R. ten Wolde,et al.  Spatio-temporal correlations can drastically change the response of a MAPK pathway , 2009, Proceedings of the National Academy of Sciences.

[62]  John A. Zollweg,et al.  The Lennard-Jones equation of state revisited , 1993 .

[63]  P. T. Wolde,et al.  Simulating biochemical networks at the particle level and in time and space: Green's function reaction dynamics. , 2005 .

[64]  C. Brooks Computer simulation of liquids , 1989 .

[65]  Frank Noé,et al.  Dynamical Organization of Syntaxin-1A at the Presynaptic Active Zone , 2015, PLoS Comput. Biol..

[66]  U. Schwarz,et al.  Studying protein assembly with reversible Brownian dynamics of patchy particles. , 2014, The Journal of chemical physics.

[67]  Colleen E. Clancy,et al.  Mechanisms Restricting Diffusion of Intracellular cAMP , 2016, Scientific Reports.

[68]  C. Svaneborg Large-scale Atomic/Molecular Massively Parallel Simulator , 2011 .

[69]  Hartmut Löwen,et al.  Long-time self-diffusion coefficient in colloidal suspensions: theory versus simulation , 1993 .

[70]  R C Wade,et al.  Simulation of the diffusional association of barnase and barstar. , 1997, Biophysical journal.

[71]  Steven S. Andrews Particle-Based Stochastic Simulators , 2018 .

[72]  F. Noé,et al.  Explicit spatiotemporal simulation of receptor-G protein coupling in rod cell disk membranes. , 2014, Biophysical journal.

[73]  Stefan Richter,et al.  SDA 7: A modular and parallel implementation of the simulation of diffusional association software , 2015, J. Comput. Chem..

[74]  Julio O. Ortiz,et al.  Noise Contributions in an Inducible Genetic Switch: A Whole-Cell Simulation Study , 2011, PLoS Comput. Biol..

[75]  J. Beavo,et al.  Cyclic nucleotide research — still expanding after half a century , 2002, Nature Reviews Molecular Cell Biology.

[76]  F. Nédélec,et al.  Collective Langevin dynamics of flexible cytoskeletal fibers , 2007, 0903.5178.

[77]  E. Ferreira On the interaction of the elementary particles , 1961 .

[78]  B. Halle,et al.  Biomolecular hydration: From water dynamics to hydrodynamics , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[79]  P. R. ten Wolde,et al.  Green's-function reaction dynamics: a particle-based approach for simulating biochemical networks in time and space. , 2005, The Journal of chemical physics.

[80]  Felix Höfling,et al.  Highly accelerated simulations of glassy dynamics using GPUs: Caveats on limited floating-point precision , 2009, Comput. Phys. Commun..

[81]  M. Houslay Underpinning compartmentalised cAMP signalling through targeted cAMP breakdown. , 2010, Trends in biochemical sciences.

[82]  R C Wade,et al.  Brownian dynamics simulation of protein-protein diffusional encounter. , 1998, Methods.