Experimental demonstration of higher-order Laguerre-Gauss mode interferometry

The compatibility of higher-order Laguerre-Gauss (LG) modes with interferometric technologies commonly used in gravitational wave detectors is investigated. In this paper, we present the first experimental results concerning the performance of the LG{sub 33} mode in optical resonators. We show that the Pound-Drever-Hall error signal for a LG{sub 33} mode in a linear optical resonator is identical to that of the more commonly used LG{sub 00} mode, and demonstrate the feedback control of the resonator with a LG{sub 33} mode. We succeeded to increase the mode purity of a LG{sub 33} mode generated using a spatial-light modulator from 51% to 99% upon transmission through a linear optical resonator. We further report the experimental verification that a triangular optical resonator does not transmit helical LG modes.

[1]  G. M. Harry,et al.  Advanced LIGO: the next generation of gravitational wave detectors , 2010 .

[2]  A. Freise,et al.  Interferometer Techniques for Gravitational-Wave Detection , 2009, Living reviews in relativity.

[3]  Andreas Freise,et al.  Prospects of higher-order Laguerre Gauss modes in future gravitational wave detectors , 2009, 0901.4931.

[4]  J. Novak,et al.  Spectral Methods for Numerical Relativity , 2007, Living reviews in relativity.

[5]  Naoya Matsumoto,et al.  Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[6]  O. Kogan,et al.  Optimal Light Beams and Mirror Shapes for Future LIGO Interferometers , 2008, 0806.2254.

[7]  J. Millo,et al.  Thermal-noise-limited optical cavity , 2008, 2008 Conference on Precision Electromagnetic Measurements Digest.

[8]  J. Vinet Reducing thermal effects in mirrors of advanced gravitational wave interferometric detectors , 2007 .

[9]  Benno Willke,et al.  Laser beam quality and pointing measurement with an optical resonator. , 2007, The Review of scientific instruments.

[10]  B. Mours,et al.  Thermal noise reduction in interferometric gravitational wave antennas: using high order TEM modes , 2006 .

[11]  M. Berz,et al.  Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment: Editorial , 2006 .

[12]  Sheila Rowan,et al.  Thermal noise and material issues for gravitational wave detectors , 2005 .

[13]  T. Skettrup Rectangular laser resonators with astigmatic compensation , 2005 .

[14]  S. Ballmer,et al.  Se p 20 03 Detector Description and Performance for the First Coincidence Observations between LIGO and GEO The LIGO Scientific Collaboration , 2008 .

[15]  Benno Willke,et al.  Mode-cleaning and injection optics of the gravitational-wave detector GEO600 , 2003 .

[16]  E. D'ambrosio Nonspherical mirrors to reduce thermoelastic noise in advanced gravitational wave interferometers , 2003 .

[17]  V. Altuzar,et al.  Atmospheric pollution profiles in Mexico City in two different seasons , 2003 .

[18]  E. Abraham,et al.  Creation of Laguerre-Gaussian laser modes using diffractive optics , 2002 .

[19]  E. Black An introduction to Pound–Drever–Hall laser frequency stabilization , 2001 .

[20]  Johannes Courtial,et al.  Performance of a cylindrical lens mode converter for producing Laguerre-Gaussian laser modes , 1999 .

[21]  R L Byer,et al.  Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry--Perot ring-cavity premode cleaner. , 1998, Optics letters.

[22]  Kishan Dholakia,et al.  The Production Of Multiringed Laguerre-Gaussian Modes By Computer-Generated Holograms , 1998 .

[23]  M. Padgett,et al.  The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate , 1996 .

[24]  Albrecht Rüdiger,et al.  A Mode Selector to Suppress Fluctuations in Laser Beam Geometry , 1981 .

[25]  Journal of the Optical Society of America , 1950, Nature.