Instrument, Method, Brightness and Polarization Maps from the 2003 flight of BOOMERanG

Aims.We present the BOOMERanG-03 experiment, and the maps of the Stokes parameters I, Q, U of the microwave sky obtained during a 14 day balloon flight in 2003. Methods.Using a balloon-borne mm-wave telescope with polarization sensitive bolometers, three regions of the southern sky were surveyed: a deep survey (~90 square degrees) and a shallow survey (~750 square degrees) at high Galactic latitudes (both centered at , Dec ~ −45°) and a survey of ~300 square degrees across the Galactic plane at , dec ~ −47° . All three surveys were carried out in three wide frequency bands centered at 145, 245 and 345 GHz, with an angular resolution of ~ . Results.The 145 GHz maps of Stokes I are dominated by Cosmic Microwave Background (CMB) temperature anisotropy, which is mapped with high signal to noise ratio. The measured anisotropy pattern is consistent with the pattern measured in the same region by BOOMERanG-98 and by WMAP. The 145 GHz maps of Stokes Q and U provide a robust statistical detection of polarization of the CMB when subjected to a power spectrum analysis. The amplitude of the detected polarization is consistent with that of the CMB in the CDM cosmological scenario. At 145 GHz, in the CMB surveys, the intensity and polarization of the astrophysical foregrounds are found to be negligible with respect to the cosmological signal. At 245 and 345 GHz we detect ISD emission correlated to the 3000 GHz IRAS/DIRBE maps, and give upper limits for any other non-CMB component. When compared to monitors of different interstellar components, the intensity maps of the surveyed section of the Galactic plane show that a variety of emission mechanisms is present in that region.

[1]  A. Melchiorri,et al.  A Measurement of the CMB ⟨EE⟩ Spectrum from the 2003 Flight of BOOMERANG , 2005, astro-ph/0507514.

[2]  A. Melchiorri,et al.  A Measurement of the Polarization-Temperature Angular Cross-Power Spectrum of the Cosmic Microwave Background from the 2003 Flight of BOOMERANG , 2005, astro-ph/0507507.

[3]  A. Melchiorri,et al.  A Measurement of the Angular Power Spectrum of the CMB Temperature Anisotropy from the 2003 Flight of BOOMERANG , 2005, astro-ph/0507494.

[4]  A. Melchiorri,et al.  Cosmological Parameters from the 2003 Flight of BOOMERANG , 2005, astro-ph/0507503.

[5]  John E. Carlstrom,et al.  Degree Angular Scale Interferometer 3 Year Cosmic Microwave Background Polarization Results , 2005 .

[6]  S. Poppi,et al.  Polarized diffuse emission at 2.3 GHz in a high Galactic latitude area , 2005, astro-ph/0503043.

[7]  A. Readhead,et al.  Limits on the Polarization of the Cosmic Microwave Background Radiation at Multipoles up to l ~ 2000 , 2005, astro-ph/0502174.

[8]  Nicola Vittorio,et al.  ROMA: a map-making algorithm for polarised CMB data sets , 2005, astro-ph/0502142.

[9]  P. Fosalba,et al.  Temperature and polarization angular power spectra of Galactic dust radiation at 353 GHz as measured by Archeops , 2005, astro-ph/0501427.

[10]  P. Farese,et al.  First Measurements of the Polarization of the Cosmic Microwave Background Radiation at Small Angular Scales from CAPMAP , 2004, astro-ph/0409380.

[11]  J. Carlstrom,et al.  Degree Angular Scale Interferometer 3 Year Cosmic Microwave Background Polarization Results , 2004, astro-ph/0409357.

[12]  J. E. Ruhl,et al.  COMPASS: An Upper Limit on Cosmic Microwave Background Polarization at an Angular Scale of 20' , 2004 .

[13]  M. Petris,et al.  A far infrared polarimeter , 2004, astro-ph/0405399.

[14]  E. N. Vinyajkin,et al.  The Sky Polarization Observatory , 2004, astro-ph/0401193.

[15]  R. Nichol,et al.  Cosmological parameters from SDSS and WMAP , 2003, astro-ph/0310723.

[16]  C. Renault,et al.  ASYMFAST : A method for convolving maps with asymmetric main beams , 2003, astro-ph/0310260.

[17]  S. Masi,et al.  First detection of polarization of the submillimetre diffuse galactic dust emission by Archeops , 2003, astro-ph/0306222.

[18]  P. Giommi,et al.  Evidence for a significant Blazar contamination in CMB anisotropy maps , 2003, astro-ph/0306206.

[19]  J. Bond,et al.  Polarization Observations with the Cosmic Background Imager , 2001, Science.

[20]  J. Gundersen THE KU-BAND POLARIZATION IDENTIFIER , 2003 .

[21]  L. Cayón,et al.  Goodness-of-fit tests of Gaussianity: constraints on the cumulants of the MAXIMA data , 2003, astro-ph/0309586.

[22]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications For Inflation , 2003 .

[23]  M. Halpern,et al.  First Year Wilkinson Microwave Anisotropy Probe Observations: Dark Energy Induced Correlation with Radio Sources , 2003, The Astrophysical Journal.

[24]  Adrian T. Lee,et al.  Correlations between the Wilkinson Microwave Anisotropy Probe and MAXIMA Cosmic Microwave Background Anisotropy Maps , 2003, astro-ph/0308355.

[25]  P. Farese,et al.  COMPASS: An Upper Limit on CMB Polarization at an Angular Scale of 20 arc minutes , 2003, astro-ph/0308309.

[26]  Michael E. Jones,et al.  Searching for non-Gaussianity in the Very Small Array data , 2003, astro-ph/0308266.

[27]  J. Borrill,et al.  MAXIPOL: a balloon-borne experiment for measuring the polarization anisotropy of the cosmic microwave background radiation , 2003, astro-ph/0308259.

[28]  R. Sault,et al.  Polarization Observations in a Low Synchrotron Emission Field at 1.4 GHz , 2003, astro-ph/0307363.

[29]  A. Liddle,et al.  Constraining slow-roll inflation with WMAP and 2dF , 2003, astro-ph/0306305.

[30]  S. Hanany,et al.  A cosmic microwave background radiation polarimeter using superconducting bearings , 2003, astro-ph/0304312.

[31]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Tests of Gaussianity , 2003 .

[32]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[33]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[34]  James J. Bock,et al.  Bolometric detectors for the Planck surveyor , 2003, SPIE Astronomical Telescopes + Instrumentation.

[35]  M. Kunz,et al.  The trispectrum of the cosmic microwave background on subdegree angular scales: an analysis of the BOOMERanG data , 2003, astro-ph/0301294.

[36]  J. J. Bock,et al.  A Polarization Sensitive Bolometric Receiver for Observations of the Cosmic Microwave Background , 2002, SPIE Astronomical Telescopes + Instrumentation.

[37]  C. Skordis,et al.  Probing the Reionization History of the Universe using the Cosmic Microwave Background Polarization , 2002, astro-ph/0207591.

[38]  L. Piccirillo,et al.  An Instrument for Investigating the Large Angular Scale Polarization of the Cosmic Microwave Background , 2001, astro-ph/0111276.

[39]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[40]  J. M. Kovac,et al.  Measurement of polarization with the Degree Angular Scale Interferometer , 2002, Nature.

[41]  C. L. Kuo,et al.  High-Resolution Observations of the Cosmic Microwave Background Power Spectrum with ACBAR , 2002, astro-ph/0212289.

[42]  A. Melchiorri,et al.  Improved Measurement of the Angular Power Spectrum of Temperature Anisotropy in the Cosmic Microwave Background from Two New Analyses of BOOMERANG Observations , 2002, astro-ph/0212229.

[43]  J. Carlstrom,et al.  Detection of polarization in the cosmic microwave background using DASI , 2002, Nature.

[44]  V. V. Hristov,et al.  BOOMERANG: A Balloon-borne Millimeter-Wave Telescope and Total Power Receiver for Mapping Anisotropy in the Cosmic Microwave Background , 2002, astro-ph/0206254.

[45]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[46]  P. Bernardis,et al.  Three sun sensors for stratospheric balloon payloads , 2002 .

[47]  A. Melchiorri,et al.  Search for Non-Gaussian Signals in the BOOMERANG Maps: Pixel-Space Analysis , 2002, astro-ph/0201133.

[48]  Paul J. Steinhardt,et al.  A Cyclic Model of the Universe , 2001, Science.

[49]  P. Natoli,et al.  Non-iterative methods to estimate the in-flight noise properties of CMB detectors , 2001, astro-ph/0110508.

[50]  V. V. Hristov,et al.  The BOOMERANG North America Instrument: A Balloon-borne Bolometric Radiometer Optimized for Measurements of Cosmic Background Radiation Anisotropies from 0.°3 to 4° , 2001, astro-ph/0105148.

[51]  M. Tegmark,et al.  A Limit on the Large Angular Scale Polarization of the Cosmic Microwave Background , 2001, astro-ph/0107013.

[52]  A. Melchiorri,et al.  Multiple Peaks in the Angular Power Spectrum of the Cosmic Microwave Background: Significance and Consequences for Cosmology , 2001, astro-ph/0105296.

[53]  A. Melchiorri,et al.  A Measurement by BOOMERANG of Multiple Peaks in the Angular Power Spectrum of the Cosmic Microwave Background , 2001, astro-ph/0104460.

[54]  R. Tascone,et al.  Limits due to instrumental polarisation in CMB experiments at microwave wavelengths , 2001, astro-ph/0103318.

[55]  J. Bartlett,et al.  Concerning parameter estimation using the cosmic microwave background , 2001, astro-ph/0104366.

[56]  E. Hivon,et al.  High-Latitude Galactic Dust Emission in the BOOMERANG Maps , 2001, astro-ph/0101539.

[57]  P. Natoli,et al.  A Map-Making algorithm for the Planck Surveyor , 2001, astro-ph/0101252.

[58]  O. Dor'e,et al.  MAPCUMBA: A fast iterative multi-grid map-making algorithm for CMB experiments , 2001, astro-ph/0101112.

[59]  J. McMahon,et al.  New Limits on the Polarized Anisotropy of the Cosmic Microwave Background at Subdegree Angular Scales , 2000, astro-ph/0010592.

[60]  D. Hartmann,et al.  The Milky Way in Molecular Clouds: A New Complete CO Survey , 2000, astro-ph/0009217.

[61]  Adrian T. Lee,et al.  Cosmology from MAXIMA-1, BOOMERANG, and COBE DMR cosmic microwave background observations. , 2000, Physical review letters.

[62]  Peter Sollich,et al.  AIP CONF PROC , 2001 .

[63]  V. V. Hristov,et al.  Cosmological parameters from the first results of Boomerang , 2001 .

[64]  S. Padin,et al.  The Cosmic Background Imager , 2000, astro-ph/0012212.

[65]  Fermilab,et al.  Cosmological parameters from velocities, cosmic microwave background and supernovae , 2000, astro-ph/0006170.

[66]  M. Tegmark,et al.  New microwave background constraints on the cosmic matter budget: trouble for nucleosynthesis? , 2000, Physical review letters.

[67]  A. Melchiorri,et al.  A flat Universe from high-resolution maps of the cosmic microwave background radiation , 2000, Nature.

[68]  S. Dodelson,et al.  Dark energy and the cosmic microwave background radiation. , 2000, Physical review letters.

[69]  India.,et al.  An Australia Telescope survey for CMB anisotropies , 2000, astro-ph/0002467.

[70]  Matias Zaldarriaga,et al.  Current Cosmological Constraints from a 10 Parameter Cosmic Microwave Background Analysis , 2000, astro-ph/0002091.

[71]  Andrew H. Jaffe,et al.  Simultaneous Estimation of Noise and Signal in Cosmic Microwave Background Experiments , 1999, astro-ph/9909250.

[72]  A. Jaffe,et al.  Radical Compression of Cosmic Microwave Background Data , 1998, astro-ph/9808264.

[73]  David J. Schlegel,et al.  Extrapolation of Galactic Dust Emission at 100 Microns to Cosmic Microwave Background Radiation Frequencies Using FIRAS , 1999, astro-ph/9905128.

[74]  P. Bernardis,et al.  A long duration cryostat suitable for balloon borne photometry , 1999 .

[75]  J. Bond,et al.  Cosmic confusion: degeneracies among cosmological parameters derived from measurements of microwave background anisotropies , 1998, astro-ph/9807103.

[76]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[77]  P. L. Richards,et al.  Measurements of thermal transport in low stress silicon nitride films , 1998 .

[78]  Matias Zaldarriaga,et al.  Gravitational lensing effect on cosmic microwave background polarization , 1998, astro-ph/9803150.

[79]  P. Bernardis,et al.  A self-contained 3He refrigerator suitable for long duration balloon experiments , 1998 .

[80]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[81]  W. White A CMB polarization primer , 1997, astro-ph/9706147.

[82]  U. Seljak,et al.  Polarization of the Microwave Background in Defect Models , 1997, astro-ph/9704231.

[83]  P. A. R. Ade,et al.  The Sunyaev-Zeldovich Infrared Experiment: A Millimeter-Wave Receiver for Cluster Cosmology , 1997, astro-ph/9702222.

[84]  H. D. Castillo,et al.  Composite infrared bolometers with Si3N4 micromesh absorbers. , 1997, Applied optics.

[85]  M. Kamionkowski,et al.  Statistics of cosmic microwave background polarization , 1996, astro-ph/9611125.

[86]  U. Seljak,et al.  An all sky analysis of polarization in the microwave background , 1996, astro-ph/9609170.

[87]  Edward J. Wollack,et al.  A Measurement of the Angular Power Spectrum of the Anisotropy in the Cosmic Microwave Background , 1996, astro-ph/9601197.

[88]  Edward J. Wollack,et al.  An Instrument for Investigation of the Cosmic Microwave Background Radiation at Intermediate Angular Scales , 1996, astro-ph/9601196.

[89]  S. Masi,et al.  Detection of cosmic microwave background anisotropy at 1.8 deg: Theoretical implications on inflationary models , 1994 .

[90]  P. Richards Bolometers for infrared and millimeter waves , 1994 .

[91]  Andrew E. Lange,et al.  The Far-Infrared Photometer on the Infrared Telescope in Space , 1994 .

[92]  Turner Recovering the inflationary potential. , 1993, Physical review. D, Particles and fields.

[93]  Copeland,et al.  Observing the inflaton potential. , 1993, Physical review letters.

[94]  Copeland,et al.  Reconstructing the inflaton potential: In principle and in practice. , 1993, Physical review. D, Particles and fields.

[95]  P. Richards,et al.  A Bolometric Millimeter-wave System for Observations of Anisotropy in the Cosmic Microwave Background Radiation on Medium Angular Scales , 1992 .

[96]  E. Ribak,et al.  Constrained realizations of Gaussian fields : a simple algorithm , 1991 .

[97]  R. B. Partridge,et al.  Linear polarized fluctuations in the cosmic microwave background , 1988, Nature.

[98]  Silvia Masi,et al.  Search for the Cosmic Background Polarization , 1986 .

[99]  S. White THE EVOLUTION OF LARGE SCALE STRUCTURE , 1984 .

[100]  Nick Kaiser,et al.  Small-angle anisotropy of the microwave background radiation in the adiabatic theory , 1983 .

[101]  Alan H. Guth,et al.  Fluctuations in the New Inflationary Universe , 1982 .

[102]  J. Mather Bolometer noise: nonequilibrium theory. , 1982, Applied optics.

[103]  Michael S. Turner,et al.  The early Universe , 1981, Nature.

[104]  Viatcheslav Mukhanov,et al.  Quantum Fluctuations and a Nonsingular Universe , 1981 .

[105]  Philip M. Lubin,et al.  Polarization of the cosmic background radiation , 1981 .

[106]  Jr. Nanos,et al.  Polarization of the blackbody radiation at 3.2 centimeters , 1979 .

[107]  Vincenzo Natale,et al.  Polarization of the microwave background radiation. I - Anisotropic cosmological expansion and evolution of the polarization states. II - an infrared survey of the sky , 1978 .

[108]  J. Dijk,et al.  The polarization losses of offset paraboloid antennas , 1974 .

[109]  C. Dragone,et al.  The radiation pattern and impedance of offset and symmetrical near-field Cassegrainian and Gregorian antennas , 1974 .

[110]  Martin J. Rees,et al.  POLARIZATION AND SPECTRUM OF THE PRIMEVAL RADIATION IN AN ANISOTROPIC UNIVERSE. , 1968 .

[111]  A. Mitsuishi,et al.  Transmission Filters in the Far-Infrared Region , 1962 .

[112]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[113]  R. Jones,et al.  The General Theory of Bolometer Performance , 1953 .

[114]  H. N. Russell Radiation pressure and celestial motions. , 1921 .