Bonus-Malus scales using exponential loss functions

ZusammenfassungDiese Arbeit konzentriert sich auf die Konstruktion von Bonus-Malus-Systemen in der Kfz-Haftpflichtversicherung. Insbesondere wird eine praktische Methode vorgestellt, urn optimale Bonus-Malus-Tarife mit vemünftigen Buβen zu konstruieren, welche kommerziell implementiert werden konnen. Dazu wird die Symmetric zwische Uber-und Unterbelastung, die sich in der üblichen quadratischen Verlustfunktion ausdrückt, durch die Einführung parametrischer asymmetrischer Verlustfunktionen vom Exponentialtyp aufgebrochen. Das resultierende System besitzt die erwiinschte finanzielle Stabilitätseigenschaft.SummaryThis paper focuses on techniques for constructing Bonus-Malus systems in third party liability automobile insurance. Specifically, the article presents a practical method for constructing optimal Bonus-Malus scales with reasonable penalties that can be commercially implemented. For this purpose, the symmetry between the overcharges and the undercharges reflected in the usual quadratic loss function is broken through the introduction of parametric asymmetric loss functions of exponential type. The resulting system possesses the desirable financial stability property.

[1]  L. Simar Maximum Likelihood Estimation of a Compound Poisson Process , 1976 .

[2]  Paul Embrechts,et al.  Stochastic processes in insurance and finance , 2001 .

[3]  Distributions stationnaires d'un système bonus–malus et probabilité de ruine , 1988, ASTIN Bulletin.

[4]  Ragnar Norberg,et al.  A credibility theory for automobile bonus systems , 1976 .

[5]  B. Sundt,et al.  On bonus systems with credibility scales , 1989 .

[6]  Using Mixed Poisson Processes in Connection with Bonus-Malus Systems , 1999, ASTIN Bulletin.

[7]  Jean Pinquet,et al.  Allowance for Cost of Claims in Bonus-Malus Systems , 1997, ASTIN Bulletin.

[8]  G. Dionne,et al.  A Generalization of Automobile Insurance Rating Models: The Negative Binomial Distribution with a Regression Component , 1988, ASTIN Bulletin.

[9]  G. Dionne,et al.  Automobile Insurance Ratemaking In The Presence Of Asymmetric Information , 1992 .

[10]  Tillinghast-Towers Perrin SETTING A BONUS-MALUS SCALE IN THE PRESENCE OF OTHER RATING FACTORS , 2000 .

[11]  J. Lemaire How to Define a Bonus-Malus System with an Exponential Utility Function , 1979, ASTIN Bulletin.

[12]  Michel Denuit,et al.  Smoothed NPML estimation of the risk distribution underlying Bonus-Malus systems , 2001 .

[13]  Marc Goovaerts,et al.  Bounds for the optimal critical claim size of a bonus system , 1983 .

[14]  Jean Pinquet,et al.  Experience Rating through Heterogeneous Models , 2000 .

[15]  Tomasz Rolski,et al.  Stochastic Processes for Insurance and Finance , 2001 .

[16]  Jean Lemaire,et al.  Bonus-malus systems in automobile insurance , 1995 .