Path selection for quantum repeater networks

Quantum networks will support long-distance quantum key distribution (QKD) and distributed quantum computation, and are an active area of both experimental and theoretical research. Here, we present an analysis of topologically complex networks of quantum repeaters composed of heterogeneous links. Quantum networks have fundamental behavioral differences from classical networks; the delicacy of quantum states makes a practical path selection algorithm imperative, but classical notions of resource utilization are not directly applicable, rendering known path selection mechanisms inadequate. To adapt Dijkstra’s algorithm for quantum repeater networks that generate entangled Bell pairs, we quantify the key differences and define a link cost metric, seconds per Bell pair of a particular fidelity, where a single Bell pair is the resource consumed to perform one quantum teleportation. Simulations that include both the physical interactions and the extensive classical messaging confirm that Dijkstra’s algorithm works well in a quantum context. Simulating about three hundred heterogeneous paths, comparing our path cost and the total work along the path gives a coefficient of determination of 0.88 or better.

[1]  Hermann Kampermann,et al.  Quantum repeaters and quantum key distribution: The impact of entanglement distillation on the secret key rate , 2013, 1303.3456.

[2]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[3]  C. D. Franco,et al.  Optimal path for a quantum teleportation protocol in entangled networks , 2010, 1008.1679.

[4]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[5]  Rupert Ursin,et al.  Feasibility of 300 km quantum key distribution with entangled states , 2009, 1007.4645.

[6]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[7]  W. Munro,et al.  From quantum multiplexing to high-performance quantum networking , 2010 .

[8]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[9]  A. Fowler,et al.  Surface code quantum communication. , 2009, Physical review letters.

[10]  B. Moor,et al.  Local permutations of products of Bell states and entanglement distillation , 2002, quant-ph/0207154.

[11]  Alan Mink,et al.  Quantum Key Distribution (QKD) and Commodity Security Protocols: Introduction and Integration , 2010, ArXiv.

[12]  Christoph Pacher,et al.  The SECOQC quantum key distribution network in Vienna , 2009, 2009 35th European Conference on Optical Communication.

[13]  Jian-Wei Pan,et al.  Experimental realization of entanglement concentration and a quantum repeater. , 2003, Physical review letters.

[14]  Frederic T. Chong,et al.  The effect of communication costs in solid-state quantum computing architectures , 2003, SPAA '03.

[15]  H. Kimble,et al.  Functional Quantum Nodes for Entanglement Distribution over Scalable Quantum Networks , 2007, Science.

[16]  Rodney Van Meter,et al.  IKE for IPsec with QKD , 2014 .

[17]  Jon G. Riecke,et al.  Stability issues in OSPF routing , 2001, SIGCOMM 2001.

[18]  M. Lukin,et al.  Fault-tolerant quantum communication based on solid-state photon emitters. , 2004, Physical review letters.

[19]  Prem Kumar,et al.  Infrastructure for the quantum internet , 2004, CCRV.

[20]  J. M. Taylor,et al.  Fast and robust approach to long-distance quantum communication with atomic ensembles , 2006, quant-ph/0609236.

[21]  W. Dur,et al.  Role of memory errors in quantum repeaters , 2007 .

[22]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[23]  E. Knill,et al.  Experimental purification of two-atom entanglement , 2006, Nature.

[24]  R. V. Meter,et al.  DISTRIBUTED QUANTUM COMPUTATION ARCHITECTURE USING SEMICONDUCTOR NANOPHOTONICS , 2009, 0906.2686.

[25]  Chip Elliott,et al.  Quantum cryptography in practice , 2003, SIGCOMM '03.

[26]  P. Villoresi,et al.  Experimental verification of the feasibility of a quantum channel between space and Earth , 2008, 0803.1871.

[27]  T ChongFrederic,et al.  High-level interconnect model for the quantum logic array architecture , 2008 .

[28]  E. Diamanti,et al.  Topological optimization of quantum key distribution networks , 2009, 0903.0839.

[29]  Masato Koashi,et al.  Demonstration of local expansion toward large-scale entangled webs. , 2010, Physical review letters.

[30]  Christophe Diot,et al.  Traffic matrix estimation: existing techniques and new directions , 2002, SIGCOMM 2002.

[31]  Kai Chen,et al.  Metropolitan all-pass and inter-city quantum communication network. , 2010, Optics express.

[32]  Avinatan Hassidim,et al.  Fast quantum byzantine agreement , 2005, STOC '05.

[33]  Rupert Ursin,et al.  High-fidelity transmission of entanglement over a high-loss free-space channel , 2009, 0902.2015.

[34]  Keiji Matsumoto,et al.  Exact Quantum Algorithms for the Leader Election Problem , 2005, STACS.

[35]  K. Nemoto,et al.  System Design for a Long-Line Quantum Repeater , 2007, IEEE/ACM Transactions on Networking.

[36]  Harry Buhrman,et al.  Distributed Quantum Computing , 2003, MFCS.

[37]  Kae Nemoto,et al.  Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light , 2006 .

[38]  Prem Kumar,et al.  Updating Quantum Cryptography Report ver. 1 , 2009, ArXiv.

[39]  Joseph D. Touch,et al.  A Recursive Network Architecture , 2006 .

[40]  H. Weinfurter,et al.  The SECOQC quantum key distribution network in Vienna , 2009, 2009 35th European Conference on Optical Communication.

[41]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[42]  Kae Nemoto,et al.  A ug 2 00 8 A high bandwidth quantum repeater , 2008 .

[43]  W. Munro,et al.  Hybrid quantum repeater using bright coherent light. , 2005, Physical Review Letters.

[44]  Denis Trystram,et al.  Parallel algorithms and architectures , 1995 .

[45]  Frederic T. Chong,et al.  High-level interconnect model for the quantum logic array architecture , 2008, JETC.

[46]  H. Briegel,et al.  Entanglement purification and quantum error correction , 2007, 0705.4165.

[47]  John Kubiatowicz,et al.  Interconnection Networks for Scalable Quantum Computers , 2006, 33rd International Symposium on Computer Architecture (ISCA'06).

[48]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[49]  Frederic T. Chong,et al.  Building quantum wires: the long and the short of it , 2003, 30th Annual International Symposium on Computer Architecture, 2003. Proceedings..

[50]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and EPR channels , 1993 .

[51]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[52]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[53]  Keiji Matsumoto,et al.  Exact Quantum Algorithms for the Leader Election Problem , 2005, TOCT.

[54]  Jacob M. Taylor,et al.  Quantum repeater with encoding , 2008, 0809.3629.

[55]  Roberto Grossi,et al.  Mathematical Foundations Of Computer Science 2003 , 2003 .