STAR FORMATION RATES AND STELLAR MASSES OF Hα SELECTED STAR-FORMING GALAXIES AT z = 0.84: A QUANTIFICATION OF THE DOWNSIZING

In this work we analyze the physical properties of a sample of 153 star-forming galaxies at z ∼ 0.84, selected by their Hα flux with a narrowband filter. B-band luminosities of the objects are higher than those of local star-forming galaxies. Most of the galaxies are located in the blue cloud, though some objects are detected in the green valley and in the red sequence. After the extinction correction is applied, virtually all these red galaxies move to the blue sequence, unveiling their dusty nature. A check on the extinction law reveals that the typical extinction law for local starbursts is well suited for our sample but with E(B − V)stars = 0.55 E(B − V)gas. We compare star formation rates (SFRs) measured with different tracers (Hα, far-ultraviolet, and infrared), finding that they agree within a factor of three after extinction correction. We find a correlation between the ratios SFRFUV/SFRHα, SFRIR/SFRHα, and the EW(Hα) (i.e., weighted age), which accounts for part of the scatter. We obtain stellar mass estimations by fitting templates to multi-wavelength photometry. The typical stellar mass of a galaxy within our sample is ∼1010 M☉. The SFR is correlated with stellar mass and the specific SFR decreases with it, indicating that massive galaxies are less affected by star formation processes than less massive ones. This result is consistent with the downsizing scenario. To quantify this downsizing we estimated the quenching mass MQ for our sample at z ∼ 0.84, finding that it declines from MQ ∼ 1012 M☉ at z ∼ 0.84 to MQ ∼ 8 × 1010 M☉ at the local universe.

[1]  V. Villar,et al.  UV-TO-FIR ANALYSIS OF SPITZER/IRAC SOURCES IN THE EXTENDED GROTH STRIP. II. PHOTOMETRIC REDSHIFTS, STELLAR MASSES, AND STAR FORMATION RATES , 2011, 1102.4335.

[2]  V. Villar,et al.  UV-TO-FIR ANALYSIS OF SPITZER/IRAC SOURCES IN THE EXTENDED GROTH STRIP. I. MULTI-WAVELENGTH PHOTOMETRY AND SPECTRAL ENERGY DISTRIBUTIONS , 2011, 1101.3308.

[3]  H. Rix,et al.  THE STAR FORMATION HISTORY OF MASS-SELECTED GALAXIES IN THE COSMOS FIELD , 2010, 1011.6370.

[4]  U. Wyoming,et al.  THE Hα LUMINOSITY FUNCTION AND STAR FORMATION RATE VOLUME DENSITY AT z = 0.8 FROM THE NEWFIRM Hα SURVEY , 2010, 1011.2759.

[5]  I. Smail,et al.  The dependence of star formation activity on environment and stellar mass at z∼ 1 from the HiZELS-Hα survey , 2010, 1007.2642.

[6]  N. Brandt,et al.  MOIRCS DEEP SURVEY. VI. NEAR-INFRARED SPECTROSCOPY OF K-SELECTED STAR-FORMING GALAXIES AT z ∼ 2 , 2010, 1005.4727.

[7]  A. Georgakakis,et al.  AEGIS: A MULTIWAVELENGTH STUDY OF SPITZER POWER-LAW GALAXIES , 2010, 1005.3331.

[8]  A. Cimatti,et al.  The first Herschel view of the mass-SFR link in high-z galaxies , 2010, 1005.1089.

[9]  D. Schaerer,et al.  The H-alpha luminosity function at redshift 2.2 - A new determination using VLT/HAWK-I , 2009, 0912.3267.

[10]  J. Dunlop,et al.  Obscured star formation at z= 0.84 with HiZELS: the relationship between star formation rate and Hα or ultraviolet dust extinction★ , 2009, 0911.2511.

[11]  Benjamin D. Johnson,et al.  COMPARISON OF Hα AND UV STAR FORMATION RATES IN THE LOCAL VOLUME: SYSTEMATIC DISCREPANCIES FOR DWARF GALAXIES , 2009, 0909.5205.

[12]  M. Franx,et al.  UV CONTINUUM SLOPE AND DUST OBSCURATION FROM z ∼ 6 TO z ∼ 2: THE STAR FORMATION RATE DENSITY AT HIGH REDSHIFT , 2009, 0909.4074.

[13]  Robert C. Kennicutt,et al.  DUST-CORRECTED STAR FORMATION RATES OF GALAXIES. I. COMBINATIONS OF Hα AND INFRARED TRACERS , 2009, 0908.0203.

[14]  B. Weiner,et al.  SUBMITTED TO APJ Preprint typeset using LATEX style emulateapj v. 10/09/06 MID-IR LUMINOSITIES AND UV/OPTICAL STAR FORMATION RATES AT Z < 1.4 , 2009 .

[15]  K. Bundy,et al.  THE EVOLUTIONARY HISTORY OF LYMAN BREAK GALAXIES BETWEEN REDSHIFT 4 AND 6: OBSERVING SUCCESSIVE GENERATIONS OF MASSIVE GALAXIES IN FORMATION , 2009, 0902.2907.

[16]  Oxford,et al.  HiZELS:a high-redshift survey of Hα emitters - II. the nature of star-forming galaxies at z = 0.84 , 2009, 0901.4114.

[17]  B. Weiner,et al.  DETERMINING STAR FORMATION RATES FOR INFRARED GALAXIES , 2008, 0810.4150.

[18]  V. Villar,et al.  On the nature of the extragalactic number counts in the K-band , 2008, 0811.3104.

[19]  C. Steidel,et al.  A STEEP FAINT-END SLOPE OF THE UV LUMINOSITY FUNCTION AT z ∼ 2–3: IMPLICATIONS FOR THE GLOBAL STELLAR MASS DENSITY AND STAR FORMATION IN LOW-MASS HALOS , 2008, 0810.2788.

[20]  A. Georgakakis,et al.  AEGIS-X: THE CHANDRA DEEP SURVEY OF THE EXTENDED GROTH STRIP , 2008, 0809.1349.

[21]  G. Rieke,et al.  Spitzer’s Contribution to the AGN Population , 2008, 0806.4610.

[22]  D. Elbaz,et al.  A simple model to interpret the ultraviolet, optical and infrared emission from galaxies , 2008, 0806.1020.

[23]  R. J. Ivison,et al.  HiZELS: a high-redshift survey of Hα emitters – I. The cosmic star formation rate and clustering at z= 2.23 , 2008, 0805.2861.

[24]  J. Silverman,et al.  Tracing the Mass-Dependent Star Formation History of Late-Type Galaxies Using X-Ray Emission: Results from the Chandra Deep Fields , 2008, 0803.3620.

[25]  E. L. Wright,et al.  A Catalog of Mid-Infrared Sources in the Extended Groth Strip , 2008, 0803.0748.

[26]  G. Rieke,et al.  The Stellar Mass Assembly of Galaxies from z = 0 to z = 4: Analysis of a Sample Selected in the Rest-Frame Near-Infrared with Spitzer , 2007, 0709.1354.

[27]  V. Villar,et al.  The Hα-based Star Formation Rate Density of the Universe at z = 0.84 , 2007, 0712.4150.

[28]  R. Massey,et al.  A Subaru Weak-Lensing Survey. I. Cluster Candidates and Spectroscopic Verification , 2007, 0707.2249.

[29]  Laboratoire d'Astrophysique de Marseille,et al.  The UV-Optical Galaxy Color-Magnitude Diagram. I. Basic Properties , 2007, 0706.3938.

[30]  Astronomy,et al.  The Calibration of Mid-Infrared Star Formation Rate Indicators , 2007, 0705.3377.

[31]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[32]  Benjamin D. Johnson,et al.  UV Star Formation Rates in the Local Universe , 2007, 0704.3611.

[33]  J. Starck,et al.  The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.

[34]  Caltech,et al.  Star Formation in AEGIS Field Galaxies since z = 1.1: Staged Galaxy Formation and a Model of Mass-dependent Gas Exhaustion , 2007, astro-ph/0703056.

[35]  S. Pascual,et al.  A Contribution to the Selection of Emission‐Line Galaxies Using Narrowband Filters in the Optical Airglow Windows , 2006, astro-ph/0611121.

[36]  E. L. Wright,et al.  The All-Wavelength Extended Groth Strip International Survey (AEGIS) Data Sets , 2006, astro-ph/0607355.

[37]  E. Wright A Cosmology Calculator for the World Wide Web , 2006, astro-ph/0609593.

[38]  A. Connolly,et al.  The Deep Evolutionary Exploratory Probe 2 Galaxy Redshift Survey: The Galaxy Luminosity Function to z ~ 1 , 2006 .

[39]  D. Calzetti,et al.  Ultraviolet through Far-Infrared Spatially Resolved Analysis of the Recent Star Formation in M81 (NGC 3031) , 2006, astro-ph/0605605.

[40]  I. Parry,et al.  The star formation rate at redshift one: Hα spectroscopy with CIRPASS , 2006, astro-ph/0604584.

[41]  C. Steidel,et al.  Hα Observations of a Large Sample of Galaxies at z ~ 2: Implications for Star Formation in High-Redshift Galaxies , 2006, astro-ph/0604388.

[42]  Dimitra Rigopoulou,et al.  Infrared Power-Law Galaxies in the Chandra Deep Field-South: Active Galactic Nuclei and Ultraluminous Infrared Galaxies , 2006 .

[43]  A. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[44]  UCOLick,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 6/22/04 THE MASS ASSEMBLY HISTORY OF FIELD GALAXIES: DETECTION OF AN EVOLVING MASS LIMIT FOR STAR FORMING GALAXIES , 2005 .

[45]  J. Dunlop,et al.  Linking Stellar Mass and Star Formation in Spitzer MIPS 24 μm Galaxies , 2005, astro-ph/0510070.

[46]  L. Kewley,et al.  Star Formation in NGC 5194 (M51a): The Panchromatic View from GALEX to Spitzer , 2005, astro-ph/0507427.

[47]  Tucson,et al.  Infrared Luminosity Functions from the Chandra Deep Field-South: The Spitzer View on the History of Dusty Star Formation at 0 ≲ z ≲ 1* , 2005, astro-ph/0506462.

[48]  A. Connolly,et al.  The DEEP2 Galaxy Redshift Survey: The Galaxy Luminosity Function to z ~ 1 , 2005, astro-ph/0506041.

[49]  A. Szalay,et al.  Galaxy Luminosity Functions to z~1 from DEEP2 and COMBO-17: Implications for Red Galaxy Formation , 2005, astro-ph/0506044.

[50]  Christopher D. Martin,et al.  Spitzer View on the Evolution of Star-forming Galaxies from z = 0 to z ~ 3 , 2005, astro-ph/0505101.

[51]  A. Szalay,et al.  The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.

[52]  H Germany,et al.  Did most present-day spirals form during the last 8 Gyr? - A formation history with violent episodes revealed by panchromatic observations , 2004, astro-ph/0410518.

[53]  C. Maraston Evolutionary population synthesis: models, analysis of the ingredients and application to high‐z galaxies , 2004, astro-ph/0410207.

[54]  T. Budavari,et al.  The GALEX-VVDS Measurement of the Evolution of the Far-Ultraviolet Luminosity Density and the Cosmic Star Formation Rate , 2004, astro-ph/0411424.

[55]  Arjun Dey,et al.  Submitted to the Astrophysical Journal Letters Mid-Infrared Selection of Active Galaxies , 2004 .

[56]  J. Newman,et al.  Evolution and Color Dependence of the Galaxy Angular Correlation Function: 350,000 Galaxies in 5 Square Degrees , 2004, astro-ph/0403423.

[57]  Max Pettini,et al.  Optical Selection of Star-forming Galaxies at Redshifts 1 < z < 3 , 2004, astro-ph/0401445.

[58]  M. Pettini,et al.  A Survey of Star-forming Galaxies in the 1.4 ≲ z ≲ 2.5 Redshift Desert: Overview , 2004, astro-ph/0401439.

[59]  M. Giavalisco,et al.  A Deep Wide-Field, Optical, and Near-Infrared Catalog of a Large Area around the Hubble Deep Field North , 2003, astro-ph/0312635.

[60]  D. Elbaz,et al.  Star formation rates of distant luminous infrared galaxies derived from Hα and IR luminosities , 2003, astro-ph/0311113.

[61]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[62]  P. Pérez-González Stellar Populations in Local Star‐forming Galaxies , 2003, astro-ph/0311222.

[63]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[64]  D. M. Alexander,et al.  The Chandra Deep Field North Survey. XIII. 2 Ms Point-Source Catalogs , 2003, astro-ph/0304392.

[65]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[66]  E. Bell Estimating Star Formation Rates from Infrared and Radio Luminosities: The Origin of the Radio-Infrared Correlation , 2002, astro-ph/0212121.

[67]  C. I. O. Technology.,et al.  Stellar populations in local star-forming galaxies – II. Recent star formation properties and stellar masses , 2002, astro-ph/0209397.

[68]  R. Nichol,et al.  The dependence of star formation history and internal structure on stellar mass for 105 low‐redshift galaxies , 2002, astro-ph/0205070.

[69]  A. Comastri,et al.  The 2-10 keV luminosity as a Star Formation Rate indicator , 2002, astro-ph/0202241.

[70]  A. C. Phillips,et al.  A Multiwavelength Approach to the Star Formation Rate Estimation in Galaxies at Intermediate Redshifts , 2002, astro-ph/0210344.

[71]  D. Burke,et al.  Star Formation History since z = 1.5 as Inferred from Rest-Frame Ultraviolet Luminosity Density Evolution , 2002, astro-ph/0203168.

[72]  S. Maddox,et al.  The Hα luminosity function and star formation rate up to z ∼ 1 ⋆ , 2001, astro-ph/0111390.

[73]  V. Narayanan,et al.  Color Separation of Galaxy Types in the Sloan Digital Sky Survey Imaging Data , 2001, astro-ph/0107201.

[74]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[75]  A. Connolly,et al.  Star Formation in Galaxies between Redshifts of 0.7 and 1.8 , 2000 .

[76]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[77]  O. Fèvre,et al.  15 Micron Infrared Space Observatory Observations of the 1415+52 Canada-France Redshift Survey Field: The Cosmic Star Formation Rate as Derived from Deep Ultraviolet, Optical, Mid-Infrared, and Radio Photometry , 1999 .

[78]  Lennox L. Cowie,et al.  Evidence for a Gradual Decline in the Universal Rest-Frame Ultraviolet Luminosity Density for z < 1 , 1999, astro-ph/9904345.

[79]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .

[80]  C. Blake,et al.  Measurement of the star formation rate from Hα in field galaxies at z=1 , 1998, astro-ph/9808276.

[81]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[82]  Jr.,et al.  Comparison of H II region luminosities with observed stellar ionizing sources in the Large Magellanic Cloud , 1997, astro-ph/9708106.

[83]  A. Szalay,et al.  The Evolution of the Global Star Formation History as Measured from the Hubble Deep Field , 1997, astro-ph/9706255.

[84]  N. Duric,et al.  H(alpha), Far-Infrared and Thermal Radio Continuum Emission Within the Late-Type Spiral Galaxy M33 , 1997 .

[85]  L. Cowie,et al.  New Insight on Galaxy Formation and Evolution from Keck Spectroscopy of the Hawaii Deep Fields , 1996, astro-ph/9606079.

[86]  M. Giavalisco,et al.  Spectroscopic Confirmation of a Population of Normal Star-forming Galaxies at Redshifts z > 3 , 1996, astro-ph/9602024.

[87]  O. Fèvre,et al.  The Canada-France Redshift Survey: The Luminosity Density and Star Formation History of the Universe to z ~ 1 , 1996, astro-ph/9601050.

[88]  Henry C. Ferguson,et al.  The Lyman Continuum in Starburst Galaxies Observed with the Hopkins Ultraviolet Telescope , 1995 .

[89]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[90]  E. Salpeter The Luminosity function and stellar evolution , 1955 .