Event-Centered Information Retrieval Using Kernels on Event Graphs

Traditional information retrieval models assume keyword-based queries and use unstructured document representations. There is an abundance of event-centered texts (e.g., breaking news) and event-oriented information needs that often involve structure that cannot be expressed using keywords. We present a novel retrieval model that uses a structured event-based representation. We structure queries and documents as graphs of event mentions and employ graph kernels to measure the query-document similarity. Experimental results on two event-oriented test collections show significant improvements over state-ofthe-art keyword-based models.

[1]  Charles L. A. Clarke,et al.  Reliable information retrieval evaluation with incomplete and biased judgements , 2007, SIGIR.

[2]  Jan Snajder,et al.  Recognizing Identical Events with Graph Kernels , 2013, ACL.

[3]  Jan Snajder,et al.  Exploring Coreference Uncertainty of Generically Extracted Event Mentions , 2013, CICLing.

[4]  Ben He,et al.  Terrier : A High Performance and Scalable Information Retrieval Platform , 2022 .

[5]  Alexander F. Gelbukh,et al.  Information Retrieval with Conceptual Graph Matching , 2000, DEXA.

[6]  Djoerd Hiemstra,et al.  Using language models for information retrieval , 2001 .

[7]  Tommaso Caselli,et al.  SemEval-2010 Task 13: TempEval-2 , 2010, *SEMEVAL.

[8]  Giuseppe Attardi,et al.  Language Modeling , 2013 .

[9]  Rada Mihalcea,et al.  TextRank: Bringing Order into Text , 2004, EMNLP.

[10]  Jun Suzuki,et al.  Kernels for Structured Data for Natural Language Processing , 2005 .

[11]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[12]  Chia-Hung Lin,et al.  EVENT-BASED TEXTUAL DOCUMENT RETRIEVAL BY USING SEMANTIC ROLE LABELING AND COREFERENCE RESOLUTION , 2008 .

[13]  Alexander Dekhtyar,et al.  Information Retrieval , 2018, Lecture Notes in Computer Science.

[14]  Gianni Amati,et al.  Probability models for information retrieval based on divergence from randomness , 2003 .

[15]  W. Bruce Croft,et al.  A quasi-synchronous dependence model for information retrieval , 2011, CIKM '11.

[16]  Stephen E. Robertson,et al.  Relevance weighting of search terms , 1976, J. Am. Soc. Inf. Sci..

[17]  James Pustejovsky,et al.  TimeML: Robust Specification of Event and Temporal Expressions in Text , 2003, New Directions in Question Answering.

[18]  鈴木 潤,et al.  Kernels for structured data in natural language processing , 2005 .

[19]  Seong-Bae Park,et al.  An automatic translation of tags for multimedia contents using folksonomy networks , 2009, SIGIR.

[20]  Thomas Gärtner,et al.  On Graph Kernels: Hardness Results and Efficient Alternatives , 2003, COLT.

[21]  Kurohashi Sadao,et al.  TSUBAKI: An Open Search Engine Infrastructure for Developing Information Access Methodology (特集:情報爆発時代におけるIT基盤技術) , 2011 .

[22]  Daisuke Kawahara,et al.  Precise Information Retrieval Exploiting Predicate-Argument Structures , 2013, IJCNLP.

[23]  S. V. N. Vishwanathan,et al.  Graph kernels , 2007 .

[24]  Tatsuya Akutsu,et al.  Graph Kernels for Molecular Structure-Activity Relationship Analysis with Support Vector Machines , 2005, J. Chem. Inf. Model..

[25]  Sanda M. Harabagiu,et al.  A Linguistic Resource for Discovering Event Structures and Resolving Event Coreference , 2008, LREC.