Bacteria harnessing complexity

The study of bacterial colonies is a crucial step towards understanding biofilms. We review some of the exciting discoveries about bacterial self-organization that might shed new light on biocomplexity in general and biofilms in particular. This review is aimed at researchers from different disciplines – microbiology, biology, chemistry, physics, mathematics and computer science. To make the presentation comprehensible we have avoided the use of specialized terminology of the different disciplines and limited the experimental and computational details. Bacteria can self-organize into hierarchically structured colonies of 10 9 to

[1]  Eshel Ben-Jacob,et al.  The Artistry of Bacterial Colonies and the Antibiotic Crisis , 2001 .

[2]  E. Ben-Jacob,et al.  THE ARTISTRY OF MICROORGANISMS , 1998 .

[3]  Vicsek,et al.  Formation of complex bacterial colonies via self-generated vortices. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  J. Shapiro Thinking about bacterial populations as multicellular organisms. , 1998, Annual review of microbiology.

[5]  Bonnie L. Bassler,et al.  Parallel Quorum Sensing Systems Converge to Regulate Virulence in Vibrio cholerae , 2002, Cell.

[6]  Dirk Helbing,et al.  Bacterial cooperative organization under antibiotic stress , 2000 .

[7]  B. Crespi The evolution of social behavior in microorganisms. , 2001, Trends in ecology & evolution.

[8]  T. Vicsek,et al.  Generic modelling of cooperative growth patterns in bacterial colonies , 1994, Nature.

[9]  H. Levine,et al.  Bacterial linguistic communication and social intelligence. , 2004, Trends in microbiology.

[10]  Eshel Ben-Jacob,et al.  Bursts of sectors in expanding bacterial colonies as a possible model for tumor growth and metastases , 2003 .

[11]  H. Berg,et al.  Complex patterns formed by motile cells of Escherichia coli , 1991, Nature.

[12]  James A. Shapiro,et al.  BACTERIA AS MULTICELLULAR ORGANISMS , 1988 .

[13]  H. Berg Random Walks in Biology , 2018 .

[14]  Ned S Wingreen,et al.  Vibrio harveyi quorum sensing: a coincidence detector for two autoinducers controls gene expression , 2003, The EMBO journal.

[15]  J. Shapiro,et al.  The significances of bacterial colony patterns , 1995, BioEssays : news and reviews in molecular, cellular and developmental biology.

[16]  M. Eisenbach,et al.  Tar-dependent and -independent pattern formation by Salmonella typhimurium , 1995, Journal of bacteriology.

[17]  Erwin Schrödinger,et al.  Mind and Matter , 1959 .

[18]  Gerhard Wanner,et al.  The role of pheromones in bacterial interactions. , 1996 .

[19]  Sidney Liebes,et al.  A walk through time : from stardust to us : the evolution oflife on Earth , 1998 .

[20]  Mitsugu Matsushita,et al.  Morphological Changes in Growth Phenomena of Bacterial Colony Patterns , 1992 .

[21]  Eshel Ben-Jacob,et al.  Studies of sector formation in expanding bacterial colonies , 1998, Europhysics Letters (EPL).

[22]  E. Schrödinger What is life? : the physical aspect of the living cell , 1944 .

[23]  Bonnie L Bassler,et al.  LuxS quorum sensing: more than just a numbers game. , 2003, Current opinion in microbiology.

[24]  Eshel Ben-Jacob,et al.  Chemotactic-based adaptive self-organization during colonial development , 1996 .

[25]  D. Kaiser,et al.  Fruiting body morphogenesis in submerged cultures of Myxococcus xanthus , 1982, Journal of bacteriology.

[26]  Tiziana Santini,et al.  Colony shape as a genetic trait in the pattern-forming Bacillus mycoides , 2002, BMC Microbiology.

[27]  H. Berg,et al.  Dynamics of formation of symmetrical patterns by chemotactic bacteria , 1995, Nature.

[28]  Eshel Ben-Jacob,et al.  Physical schemata underlying biological pattern formation—examples, issues and strategies , 2004, Physical biology.

[29]  G. Salmond,et al.  The bacterial ‘enigma’: cracking the code of cell–cell communication , 1995, Molecular microbiology.

[30]  Eshel Ben-Jacob,et al.  Self-regulated complexity in cultured neuronal networks. , 2004, Physical review letters.

[31]  Herbert Levine,et al.  Cooperative self-organization of microorganisms , 2000 .

[32]  M. Ptashne,et al.  Genes and Signals , 2001 .

[33]  Eshel Ben-Jacob,et al.  The artistry of nature , 2001, Nature.

[34]  Eshel Ben-Jacob,et al.  Bacterial self–organization: co–enhancement of complexification and adaptability in a dynamic environment , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[35]  Eshel Ben-Jacob,et al.  Complex bacterial patterns , 1995, Nature.

[36]  Eshel Ben-Jacob,et al.  Communication-based regulated freedom of response in bacterial colonies , 2003 .

[37]  D. Searls,et al.  Robots in invertebrate neuroscience , 2002, Nature.

[38]  Robert J. Palmer,et al.  Communication among Oral Bacteria , 2002, Microbiology and Molecular Biology Reviews.

[39]  M. Mimura,et al.  INTERFACE GROWTH AND PATTERN FORMATION IN BACTERIAL COLONIES , 1998 .

[40]  L. Shimkets Intercellular signaling during fruiting-body development of Myxococcus xanthus. , 1999, Annual review of microbiology.

[41]  E Ben-Jacob,et al.  Lubricating bacteria model for branching growth of bacterial colonies. , 1998, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[42]  E. Ben-Jacob From snowflake formation to growth of bacterial colonies , 1993 .

[43]  Bonnie L Bassler,et al.  Small Talk Cell-to-Cell Communication in Bacteria , 2002, Cell.

[44]  G. J. Velicer Social strife in the microbial world. , 2003, Trends in microbiology.

[45]  K. Kaneda,et al.  A novel extracellular cyclic lipopeptide which promotes flagellum-dependent and -independent spreading growth of Serratia marcescens , 1992, Journal of bacteriology.

[46]  Eshel Ben-Jacob,et al.  From branching to nebula patterning during colonial development of the Paenibacillus alvei bacteria , 2000 .

[47]  Philip Ball,et al.  The Self-Made Tapestry: Pattern Formation in Nature , 1999 .

[48]  Kenji Yamamoto,et al.  Growth dynamics of Bacillus circulans colony. , 2003, Journal of theoretical biology.

[49]  E. Ben-Jacob From snowflake formation to growth of bacterial colonies II: Cooperative formation of complex colonial patterns , 1997 .

[50]  M. Dworkin Recent advances in the social and developmental biology of the myxobacteria. , 1996, Microbiological reviews.

[51]  Hiroshi Fujikawa,et al.  Diffusion-limited growth in bacterial colony formation , 1990 .

[52]  Gary M. Dunny,et al.  Cell-cell signaling in bacteria , 1999 .

[53]  Eugene Rosenberg Microbial Ecology and Infectious Disease , 1999 .

[54]  R. Lenski,et al.  Developmental cheating in the social bacterium Myxococcus xanthus , 2000, Nature.

[55]  Eshel Ben-Jacob,et al.  Biofluiddynamics of lubricating bacteria , 2001 .

[56]  E Ben-Jacob,et al.  Cooperative organization of bacterial colonies: from genotype to morphotype. , 1998, Annual review of microbiology.

[57]  S. F. Goldstein,et al.  Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes. , 2002, Annual review of genetics.

[58]  E. Ben-Jacob,et al.  The formation of patterns in non-equilibrium growth , 1990, Nature.

[59]  Mitsugu Matsushita,et al.  SELF-SIMILAR COLONY MORPHOGENESIS BY BACTERIA AS THE EXPERIMENTAL MODEL OF FRACTAL GROWTH BY A CELL POPULATION , 1993 .

[60]  Eshel Ben-Jacob,et al.  Engineered Self-Organization in Natural and Man-Made Systems , 2004 .

[61]  Herbert Levine,et al.  Pattern selection in fingered growth phenomena , 1988 .